
THEUNIVERSITYOFTEXASATAUSTIN|ENVIRONMENTALDEFENSEFUND

Energy‐WaterNexusinTexas
AshlynnS.Stillwell
CareyW.King
MichaelE.Webber
IanJ.Duncan
AmyHardberger

THEUNIVERSITYOFTEXASATAUSTIN|ENVIRONMENTALDEFENSEFUND

Energy‐WaterNexusinTexas
AshlynnS.Stillwell
1
CareyW.King
1
MichaelE.Webber
1
IanJ.Duncan
1
AmyHardberger
2
April2009

Affiliations
1
TheUniversityofTexasatAustin
2
EnvironmentalDefenseFund

Acknowledgements
TheauthorswouldliketoacknowledgethecontributionsofEliotMeyerandDesmondLawleratthe
UniversityofTexasatAustin.ThisworkwassponsoredbytheEnergyFoundationandtheTexasState
EnergyConservationOffice.

TableofContents
ExecutiveSummary ............................................................................................................................. 1
Introduction ...................................................................................................................................... 3
Chapter1. WaterforEnergy ........................................................................................................... 5
ElectricityGenerationandUse ................................................................................................................. 5
CoolingTechnologies ................................................................................................................................ 6
TypesofPowerPlants............................................................................................................................. 13
Chapter2. EnergyforWater ......................................................................................................... 20
PublicWaterSupplySystems.................................................................................................................. 20
SourceCollectionandConveyance..................................................................................................... 20
Treatment ........................................................................................................................................... 21
Distribution ......................................................................................................................................... 22
ResidentialWaterUse......................................................................................................................... 23
WastewaterSystems .............................................................................................................................. 24
CollectionandConveyance................................................................................................................. 24
Treatment ........................................................................................................................................... 24
Discharge............................................................................................................................................. 25
Chapter
3. EnergyWaterNexusinTexas ...................................................................................... 26
ElectricityGenerationfromTexasPowerPlants .................................................................................... 26
WaterConsumptionandWithdrawalsofTexasPowerPlants ............................................................... 26
EnergyforWaterandWastewaterTreatmentSystemsinTexas........................................................... 27
Chapter4. FutureEnergyandWaterUseinTexas......................................................................... 30
ElectricityDemandProjections............................................................................................................... 30
WaterDemandProjections.....................................................................................................................33
ConservationofEnergyandWater......................................................................................................... 33
ii
Chapter5. PolicyDiscussion ......................................................................................................... 36
Carbon,Water,andEnergy:TensionsandPolicyTradeoffs..................................................................36
EnergyPoliciesHaveMixedWaterImpacts .......................................................................................36
WaterPoliciesMightHaveDetrimentalCarbonImpacts ...................................................................37
CarbonPoliciesMightHaveDetrimentalWaterImpacts ................................................................... 37
ClimateChangeImpactsonWaterResources.................................................................................... 38
Conclusions .................................................................................................................................... 40
FutureWork ............................................................................................................................................ 41
References .................................................................................................................................... 42
AppendixA:Glossary
ofTerms.......................................................................................................... 47
Energyterms ...........................................................................................................................................47
Waterterms............................................................................................................................................ 47
Generalterms .........................................................................................................................................48
AppendixB:TypicalWaterBalancesforPowerPlants....................................................................... 49
AmericanElectricPower .........................................................................................................................49
SouthTexasProject................................................................................................................................. 51
1
ExecutiveSummary
Asweconfrontthechallengesposedbyclimatechange,decisionsonsupplyingenergyandwatertothe
world’sgrowingpopulationshouldnolongerbemadeinisolation.ThechallengesfacingTexasandthe
restofthegloberequirethatwerecognizethedeepinterconnections andtradeoffsinvolvedin
deciding
howtomeetpowerandwaterneedsinanincreasinglyresource
constrainedworld.
Thisreportisthefirstinaseriesdesignedtoexploreaspectsoftheenergy
waternexusinTexas.Itexaminesthewaterrequirementsforvarioustypes
ofelectricitygeneratingfa cilities,bothfortypicalsystemsnationwideand
hereinTexas.Italsoaddressestheuseofenergybywatersupplyand
wastewatertreatmentsystems,comparingnationalaverageswithTexas
specificvalues.
Futureinstallmentsinthisreportserieswillincludecasestudiesofthe
implicationsforenergyoffuturewatersupplystrategiesforTexasandmore
placespecificwatersupplyimplicationsofthefuturefuelmixforelectricity
production.Thereareseveralotheraspectsoftheenergywaternexusthat
arebeinginvestigatedbyseveralotherentitiesbutarenotcontemplatedin
thisseries,includinghydroelectricpowergeneration,unconventionalfossil
fuelproduction,andthedevelopmentofbiofuelssuchas
ethanol.
AnalysisofavailabledataforTexasrevealsthatapproximately157,000
milliongallons(482,100acrefeet)ofwaterannuallyenoughwaterforover
3millionpeopleforayear,eachusing140gallonsperpersonperdayare
consumedforcoolingthestate’s thermoelectricpowerplantswhile
generatingapproximately
400terawatthours(TWh)ofelectricity.Atthe
sametime,eachyearTexasusesanestimated2.1to2.7TWhofelectricity
forwatersystemsand1.1to2.2TWhforwastewatersystemseachyear
enoughelectricityforabout100,000peopleforayear.Theseestimatesfor
waterand
wastewatercombinedrepresentapproximately0.8to1.3%of
totalTexaselectricityand2.2 to3.4%ofindustrialelectricityuseannually.
Thereportpresentsageographicdistributionofthecurrentwaterusefor
electricitygenerationandelectricityuseforwatersupplyandwastewater
treatment,whichmaybeusefulaspolicymakersbeginto
examinethese
aspectsoftheenergywaternexus.
2
Inpreparingthereport,however,itbecameclearthat
substantiallymoresitespecificdataarenecessaryforafull
understandingofthenatureoftheenergywaternexusinTexas.
Thus,werecommendthatthestateincreaseeffortstocollect
accuratedataonthewithdrawalandconsumptionofcoolingand
process
wateratpowerplants,aswellasdataonelectricity
consumptionforpublicwatersupplyandwastewatertreatment
plantsanddistributionsystems.Thesedatawillalsobeusefulin
planningforthefuture.
Inthefuture,wateruseforelectricitygenerationwilldependonseveralfactors,includingthefuelmix
fornewgeneratingcapacity,thetypeofpowerplantandthetypeofpowerplantcoolingsystemsthat
aredeployed.Likewise,theamountofelectricityusedtopump,treatanddeliverpublicwatersupply
andtotreatwastewaterwilldependonchoicesaboutwatersourceandtreatmenttechnology.These
trends,and
tradeoffsstillneedtobebetterunderstood,butitisundeniablethattherewillbe
importantimplicationsforwaterandenergypolicyatthestate andlocallevel.
Somestepscanbetakennowtobuildthebasicsofaframeworkformoreintegratedenergyandwater
planning,including:
Amendstatelawtorequirethatapplica tionsfornewpowerplantsincludeananalysisofthe
waterandefficiencyimplicationsofvarioustypesofcoolingoptionsapplicabletotheproposed
plant.Theanalysisshouldincludefactorsrelatingtolocalclimateandairquality,regionalair
quality,wateravailability,includinginstream
flowrequirements,fueltypeandplantefficiency.
Requireacleardemonstra tionofwateravailabilityinthesitingofnewfossilfueledpower
plantsorconcentratedsolar(thisanalysisshouldconsideraveragerainfallyearsaswellas
availabilityduringextremedroughtevents).
Providestatestatutoryandregulatoryincentivesfor
implementationofpowerplantcooling
technologiesthatarelesswaterintensivethantraditionalsystems,suchasaircoolingorhybrid
wetdrycooling.
Providestateapprovedg uidance(fromtheTexasWaterDevelopmentBoardand/ortheState
EnergyConservationOffice)towatersuppliersandwastewatertreatmentproviderstohelp
quantifyenergy
useandcostsavingsassociatedwithwaterconservation.
Theoverarchingmessageisthatimplementingadvancedefficiencyisthekeytothesustainableuseof
bothenergyandwater.Improvingwaterefficiencywillreducepowerdemandandimprovingenergy
efficiencywillreducewaterdemand.Greaterefficiencyinusageofeither
energyorwaterwillhelpto
stretchourfinitesuppliesofboth,aswellasreducecoststowaterandpowerconsumers.Thestateand
localgovernmentsshouldcontinue,andwhereverpossible,increasefundingandtechnicalsupportfor
waterandenergyconservationandefficiencyprograms.
3
Introduction
Energyandwaterareintimatelyinterrelated:weuseenergyforwaterandweusewaterforenergy.
Weusewaterforelectricityproductiondirectlythroughhydroelectricpowergenerationatmajordams
andindirectlyasacoolantforthermoelectricpowerplants.Ther moelectricpowerplants—comprisedof
powerplantsthatuseheattogenerate
power,suchasnuclear,coal,naturalgas,solarthermalor
biomassfuels—arethesinglelargestuserofwaterintheUnitedStates.Wealsousewaterasacritical
inputforthegrowthandproductionofbiofuels,suchascornethanol.
Inadditiontousingwaterforenergy,wealso
useenergyforwater.Specifically,weuseasignificant
amountofelectricitytoproduce,deliver,heatandtreatwatersuppliesandtotreatwastewater.
Despitetheinterconnections,historicallythesetwosectorshavebeenregulatedandmanaged
independentlyofoneanother.Planningforenergysupplytraditionallygavescantconsiderationto
watersupply
issuesandplanningforwatersupplyoftenneglectedtofullyconsiderassociatedenergy
requirements.[1]
Failuretoconsidertheinte rdependenciesofenergyandwaterintroducesvul nerabilitieswhereby
constraintsofoneresourceintroduceconstraintsintheother.Thatis,droughtsandheatwavescreate
waterconstraintsthatcanbecomeenergyconstraints,
andgridoutagesorotherfailuresintheenergy
systemcanbecomeconstraintsinthewaterandwastewatersectors.
AseveredroughtinthesoutheastUnitedStatesin20072008broughtpowerplantswithindaysofbeing
forcedtoshutdownduetoalackofwaterforcooling.[26]
Todayinthewest,amultiyeardroughthas
loweredwaterlevelsbehindHooverDam,introducingtheriskthatLasVegaswillloseasubstantial
portionofitsdrinkingwateratthesametimethedam’shydroelectricturbinesquitspinning,which
wouldcutoffasignificantsourceofpowerfor
LosAngeles.[7,8]Heatwavescanalsointroduce
problems.Duringthe2003heatwaveinFrancethatwasresponsibleforapproximately15,000deaths,
nuclearpowerplantshadtoreducetheirpoweroutputbecauseofthehighinlettemperaturesofthe
coolingwater.[9]EnvironmentalregulationsinFrance(andtheUnited
States)limittherejection
temperatureofpowerplantcoolingwatertoavoidecosystemdamagefromthermalpollution.When
theheatwaveraisedrivertemperatures,thenuclearpowerplantscouldnotachievesufficientcooling
withintheenvironmentallimits,andsotheyreducedtheirpoweroutputatatimewhenelectricity
demand
wasspikingbyresidentsturningontheirairconditioners.Inaddition,thecorollaryistrue:
poweroutageshampertheabilityforthewater/wastewatersectortotreatanddistributewater.These
poweroutagescanoccurforavarietyofreasons,includinggridfailuresthatarecommon after
hurricanes.Forexample,hurricanesIke
andGustavinducedsustainedpoweroutages,whichcanaffect
theabilitytogetsafe,cleandrinkingwatertothepublic.
Droughts,heatwavesandhurricanesarenotunusualexperiencesforTexas,andbecauseoftheenergy
waternexus,theyintroduceacoupledcrosssectoralvulnerability.Thesevulnerabilitiesmightonlyget
morepronouncedasresourcesbecomemoreconstrainedduetopopulationgrowthandaswaterand
energysuppliersconfrontnewchallengesassociatedwithclimatechange.[10]Understandingand
4
accountingfortheenergywaternexusisbecomingincreasinglyimportanttoensurethatnatural
resourcepoliciesandplansleadtosustainableandaffordableresults.Usingan integratedpolicymaking
approachtomakethesystemmoreresilientandsustainablewouldbeasignificantstepforward.
Thisisthefirstina
seriesofreportsdesignedtoexplorecertainaspectsoftheenergywaternexus.This
reportexaminestheaveragewaterrequirementsforvarioustypesofelectricitygeneratingfacilities,
bothnationwideandhereinTexas.Italsoaddressestheuseofenergybywatersupplyandwastewater
treatmentsystems,againfroma
nationalaverageandTexasspecificperspectives.
Futureinstallmentsinthisreportserieswillincludecasestudiesofenergyimplicationsoffuturewater
supplystrategiesforTexasandmoreplacespecificwatersupplyimplicationsofthefuturefuelmixfor
electricityproduction.Thereareseveralotheraspectsoftheenergywaternexus
thatarenot
contemplatedinthisseries,butbeinginvestigatedbyseveralotherentities,includingproductionof
hydropowerforelectricitygenerationandwateruseinproducingvariousfossilfuelsandalternative
transportationfuels,suchasethanolorotherbiofuels.
Texas Electricity Consump on by Sector
(Total: 380 billion kWh)
Transporta on
0%
Commercial
29%
Reside
al
33%
Industrial
38%
U.S. Electricity Consump on by Sector
(Total: 3,700 billion kWh)
Transporta on
0%
Industrial
28%
Reside
al
37%
Commercial
35%
Chapter 1. Water for Energy
A number of primary energy sources such as coal, uranium, natural gas, biomass, sun, water, or wind,
can be used to generate electricity, which distributes energy to
commercial, and industrial
customers. Using different processes, energy within these fuel sources (chemical, kine
c, or radiant
energy) is converted into electrical energy. Based on the laws of thermodynamics, energy is neither
created nor destroyed when converted into electrical energy. However, the conversion processes are
inherently inecient, which generates waste heat that is typically dissipated by use of cooling water.
The typical thermoelectric power plants use nuclear or fossil fuels to heat
high purity water into steam,
which then turns a turbine connected to a generator, producing electricity. The steam is then
condensed back into water to con
nue the process again in a closed loop. This conde requires
cooling either by use of water, air, or both. The energy efficiency of the turbine in
ng steam into
electric energy depends in part on the e
of the steam conde process. That is, the
efficiency of the power plant depends on its ability to cool its steam loop. The
ty of water
required for cooling depends on the type of fuel, power gen
on technology, and cooling technology.
Even some power plants that do not operate with a steam cycle (i.e. gas turbines) require a small
amount of cooling for various components. In the case of fuels that must be mined (including coal,
natural gas, and uranium), the mining process also requires water.
Electricity Generation and Use
Electricity is used for many dierent aspects of society, including l ng homes and businesses and
running industrial machinery and processes. As shown in Figure 1.1, electricity consump
on for
purposes – ligh ng and hea ng homes, as well as powering appliances – is 37% of the total
electricity use in the U.S. and a similar 33% in Texas. Though e
lectricity powers some transp
the
amount used is negligible for both the U.S. and Texas. Since Texas is home to many energy-intensive
refining, chemical and manufacturing fa
industrial electricity use is higher, as a percentage of
total use, than in the country as a whole.
Figure 1.1. U.S. ) and Texas (right) electricity consum in percent, by sector for 2006. Texas uses a larger
percentage of electricity for industrial purposes than does the U.S. as a whole. [11, 12]
Residen al
Commercial
Industrial
Transporta on
5
6
U.S.ElectricityGenerationbySource
(Total:4,100billionkWh)
Petroleum
2%
Other
1%
Renewable
9%
Nuclear
19%
Coal
49%
NaturalGas
20%
TexasElectricityGenerationbySource
(Total:400billionkWh)
Petroleum
0%
Other
2%
Renew able
2%
Nuclear
10%
Coal
37%
NaturalGas
49%
Coal
NaturalGas
Nuclear
Renewable
Petroleum
Other
Differentprimaryenergysourcesareusedtogenera teelectricity.Figure1.2below showsthe
percentagesofelectricitygenerationbysourceforboththeU.S.andTexas.Thediscrepanciesintotal
electricitybetweenFigure1.1andFigure1.2areduetoenergylossesduringdistribution.TheTexasfuel
mixdiffersfromthatoftheU.S.withtwomajorpri
maryenergysources:coalandnaturalgas.Though
coalproducesnearlyhalfoftheelectricitygeneratednationwide,coalaccountsfor37%ofelectricity
generatedinTexas.NearlyhalfoftheelectricitygeneratedinTexasisfromnaturalgas,comparedto
thenationalaverageof20%.
Figure1.2.U.S.(left)andTexas(right)electricitygeneration,inpercent,byprimaryenergysourcefor2006.While
nearlyhalfoftheelectricitygeneratednationwideisfromcoal,nearlyhalfoftheelectricitygeneratedinTexasis
fromnaturalgas.Here,renewableincludestraditionalhydropower,solar,andwindpower.[11,12]
Thismixofsourcesforelectricitygenerationchangesgraduallyasnewpowerplantsandnewpower
generationtechnologiescomeonline.Forexample,therenewablesourceinFigure1.2from2006
includeswindpower,alongwithothersourceslikehydropowerandsolarpower.In2008,Texaswind
turbinesgeneratedover12terawatthou
rs(TWh)ofelectricitymorethanthetotalrenewable
generationin2006.[13]
ManyoftheelectricitygenerationsourcesinFigure1.2requirewaterforcoolingtocondensesteam.
Thewaterneededforcoolingvarieswithtypeoffuel,powergenerationtechnology,andcooling
technology.Thesecoolingtechnologiesarediscussedinth
efollowingsection.
CoolingTechnologies
Coolingtechnologiesforthermoelectricpowergenerationusewaterorairtocondensesteamfroma
steamturbine.Acloserlookateachofthedifferenttypesoftechnologiesused forcoolingreveals
advantagesanddisadvantagesofeach.Forwatercoolingtechnologies,aterminologydistinctionis
madebetweenwaterwithdrawal,removingwaterfr
omasurfaceorgroundwatersourceforuse,and
waterconsumption,evaporatingwatersuchthatisitnotdirectlyreusableinthesamelocation.Using
7
thisterminology,waterwithdrawalisalwaysgreaterthanorequaltoconsumption.TheTexasWater
DevelopmentBoardusesthetermdemand,whichisconsideredhereequaltoconsumption.Althougha
largepercentageofwithdrawnwateristypicallyreturnedtothelakeorriver,themagnitudeof
withdrawal
isimportantbecauseifthosequantitiesofwaterarenotavailablethepowerplantwill have
toshutdown.Similarly,whenwateriswithdrawnforplantuseitisnolongeravailableforotherusers
suchasmunicipalwatersupplyandenvironmentalneeds.Toassureadequatesupplyforwithdrawal,
powerplants
areoftenlocatedonwaterreservoirs.
Openloopcooling,showninFigure1.3,condensessteamusingaheatexchangerandawatersource.
Largevolumesofwaterarewithdrawnfromthewatersource(reservoir,lakeorriver),flowingthrough
theheatexchangertocondensesteaminasinglepass.Consequently,
openloopcoolingisalsoknown
asoncethroughcoolingwateriswithdrawnandpassesoncethro ugh theheatexchangerbeforemost
isreturnedtothesource.
Figure1.3.Schematicofopenloopcoolingforthermoelectricpowergeneration.Mostwaterthatiswithdrawnis
subsequentlyreturned,albeitatahighertemperature.
Sincewaterisonlycycledonceanddoesnotsignificantlyevaporateinthecoolingsystem,wateras
salineasseawatercanbeusedwithopenloopcooling.Openloopcoolingalsoconsumes le ss water
perMWhwithinthepowerplant comparedtocoolingtowersorcoolingreservoirs,typically100to
400
gal/MWh.Consumptionasapercentofwithdrawalrangesfrom1to2% .However,thispercentage
doesnottellthefullstory,sinceopenloopcoolingwithdrawsmuchlargervolumesofwater40to80
timesmore—thanothercoolingtechnologies.Thislargewaterwithdrawalcanhavesevereimpactson
nearbyusers,asitwillnotbeavailableforotherneeds.Additionally,waterintakestructurescankillfish
andthermalpollutionofreceivingwaterwaysispossiblewiththeelevatedtemperatureofthereturn
water.[14]Thermalpollutionfromhightemperaturewaterdecre asesthesolubilityofoxygeninwater,
therebyreducingdissolved
oxygen,whichisnecessaryforaquaticspeciessurvival.[15]
Closedloopcoolingisanalternativetoopenloopcooling.Insteadofwithdrawingwaterandusingit
once,closedloopcoolingrecycleswaterforadditionalsteamcond ensation.Twomaintechnologiesfor
8
implementingclosedloopcoolingexist:coolingtowers,withanaccompanyingsupplyreservoirorriver,
andcoolingreservoirs.Acoolingtower,showninFigure1.4,withdrawswaterfromasource,usuallya
coolingwatersupplyreservoir,condensessteaminaheatexchanger,andthenrecyclescoolingwater
withinthecooling
tower.Coolingtowersdissipateheatthroughevaporationofthecoolingwater.[14]
Figure1.4.Schematicofclosedloopcoolingwithacoolingtowerforthermoelectricpowergeneration.Most
waterthatiswithdrawnisconsumed.
Closedloopcoolingwithacoolingreservoiraloneoperatessimilarly,butthereservoiritselfisusedto
dissipatetheheatviabothevaporationandlossofradiantheatduringthecoolereveninghours.[16]
Waterconsumptionreported(i.e.fortheU.S.EnergyInformationAdministration)forclosedloop
coolingtypicallydoesnot
includelossesthroughforcedevaporationincoolingreservoirsandcertainly
doesnotincludenaturalevaporationevaporationfromthewatersurfacedrivenbysolarenergyand
wind.However,thepowerplantwaterreporting methodsusedbytheTexasWaterDevelopmentBoard
andTexasCommissiononEnvironmentalQualityinherentlyaccountfor
forcedevaporationfromcooling
reservoirs.
Closedloopcoolinghastheadvantageofrequiringmuchlesscontinuouswaterwithdrawalfroma
stream,river,oraquiferthanopenloopcoolingbecausewaterisrecycledwithinthecoolingsystem.On
theotherhand,80%ormoreofthewatercycledthroughthesystemis
consumedthroughevaporation,
typicallyattherateof110to850gal/MWh.Manytimes,thewaterthatisnotconsumedincooling
towers(knownasblowdown)isofalowerqualitythanthewithdrawnwaterbecauseevaporationhas
concentratedpollutantsandparticlesintheblowdown.[17]Additionally,watervaporleaving
cooling
towerscancreateaplume,whichmayreducevisibilityorcauseicingonnearbystructures.[18]While
9
manypeopleassociatecoolingtowerswithnuclearpower,theyarealsousedbysomecoalandnatural
gaspowerplants.
Thermoelectricpowerplantcoolingispossiblewithoutwaterbyuseofaircooling,oftenreferredtoas
drycooling,showninFigure1.5.Forthisconfiguration,aircooledcondensers collectsteam
inmany
smalltubes,blowairacrossthetubesusingfans,andcollectthecondensedwateratthetubeoutlet.
[19]Theoverallaircoolingprocessissimilartoacarradiator.
Figure1.5.Schematicofaircoolingforthermoelectric
powergeneration,whichdoesnotrequirewater.
Aircoolingeliminatestheneedforwater,which
openspossibilitiesforplantstobesitedinarid
locations.[19]However,aircoolinghasalower
coolingefficiencythanwatercooling.Thatis,a
cubicfootofairhasalowerabilitytodissipate
heatthanacubicfootofwater.Consequently,
largercoolingstructuresarerequired,andthese
largerstructuresrepresenthighercapitalcosts
thatvarysubjecttolocalclimate,weather,and
plantdesign.
Additionally,apowerplantcanexperiencea1%
lossinefficiencyofpowergenerationthe
conversionofprimaryfuelenergyintoelectricityforeach1
°Fincreaseintemperatureofthe
condenser,whichislimitedby ambient temperature.[20]Thoughaircoolingusesnowater,the
tradeoffislowerpowerplantefficiency,creatingadditionalairemissionsforeachunitofelectricitythat
isgenerated.Additionally,forequivalentcoolingcapacity,capitalcostsarehigherforaircooled
systems.
Asacompromisebetweenwaterandaircoolingofthermoelectricpowerplants,somehave
implementedhybridwetdrycoolingtechnologies,shownonthenextpageinFigure1.6.Hybridcooling
combinesacoolingtowerwithanaircooledcondenser,increasingcoolingefficiencyoveraircooling
duringthecriticalhot
summerdayswhiledecreasingtheoverallannualwaterconsumptionfromusing
coolingtowers.Thewatervaporexitingthewetcoolingtowerportionmixeswithheatedairfromthe
aircooledcondensertocombinethebenefitsofwaterandairco oling.Inaddition,hybridsystemscan
bebuiltinparallelconfigurationsmaking
themsomewhatredundant,thuscreatingsomeresiliency for
thepowerplants.
10
Figure1.6.Schematicofhybridwetdrycoolingforthermoelectricpowergeneration.
Hybridwetdrycoolingtechnologiesimprovethepowerplantefficiencyoverpureofaircooling,while
alsoreducingthewaterco nsumptionofpureclosedloopcooling.However,thesehybridsystemsare
expensiveandgenerallyoperatewithonlythewetcoolingtowerportionduringhotsummers,saving
waterformostofthe
yearwithrelativelylowpowerefficiencyreduction.[21]Unfortunately,summeris
oftenwhenwaterresourcesarethemoststrained.Currently,hybridwetdrycoolingtechnologiesarein
operationforpowerplantsinTheNetherlands,GreatBritain,Austria,andGermany.[22]
Onereasonwhyhybridtechnologiesarereceivingincreasedfocusis
fortheirusewithconcentrating
solarplants.Concentratingsolarpower(CSP)plantsarebestsuitedfordesertenvironmentsthathave
highdirectsolarinsolationbutfewwaterresources.Figure1.7onthenextpageshowsresultsofan
analysisofaparticularhybridwetdrycoolingdesignforaCSPplant
locatedinBarstow,Californiaa
locationwithaverygoodsolarresource.[23,24]FortheCSPandhybridcoolingdesignanalyzedfor
Figure1.7thewaterconsumptionvariesfrom80to800gal/MWhfrom100%dryto100%wetcooling.
The100%drycoolingdesignproducesapproximately4.5
to5%lesselectricitywhereasthehybrid
designwouldproduceanywherefrom96to99%oftheelectricityofthe100%wetcoolingdesign.
Thegeneraltrendshownforhybridcoolingholdsforanythermalpowerplan tusingasteamcycle,but
willvaryaccordingtositespecificparameters.Thecooling
towercanbedesignedfrom100%wet
coolingto100%drycooling,andinbetweenarangeofhybridizationexists.Asahigherpercentageof
aircoolingisused,theefficiencyimpactsandreductioninwaterconsumptionincrease.Thus,hybrid
systemsrepresentinherenttradeoffsamongplantefficiency, infrastructurecosts,and
watercosts.
11
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.94
0.95
0.96
0.97
0.98
0.99
1.00
Fractionofwetcoolingtowerwaterconsumption
Fractionofwetcoolingtowernetplantoutput
100%wet
coolingtower
100%air
coolingtower
Figure1.7.Dependinguponthedegreeofhybridizationandtechnologicaldesign,hybridcoolingtowerscanvary
inwaterconsumptionfromthatofwetcoolingtowertodrycoolingtower,alongwiththeconcomitantenergy
efficiency.(Modifiedfrom[23])
Waterrequirementsforcoolingdependonfuel,powergenerationtechnology,andcoolingtechnology.
ThesewaterrequirementsaresummarizedonthenextpageinTable1.1andTable2.2anddiscussed
furtherinthefollowingsection.Thesetablesillustratethatthereareawiderangeofpowerplantwater
usageconditionsdepending
uponthecombinationofpowerandcooling technology.
12
Table1.1.Waterwithdrawalreportedvolumesfordifferentfuelsandcoolingtechnologies.Aircoolingrequires
negligiblewaterandiscompatiblewithallofthetechnologieslisted.[17,2527]
 CoolingTechnologiesWaterWithdrawal(gal/MWh)
Open
Loop
ClosedLoop
Reservoir
Closed
Loop
Cooling
Tower
Hybrid
Cooling
AirCooling
Coal 35,000
(±15,000)
450
(±150)
550
(±50)
between <100
Nuclear 42,500
(±17,500)
800
(±300)
950
(±150)
between <100
NaturalGasCombustion
Turbine
negligible negligible negligible negligible negligible
NaturalGasCombined
Cycle
13,750
(±6,250)
155
(±25)
230 between <100
IntegratedGasification
CombinedCycle
notused notused
400
(±110)
between <100
Thermal
ConcentratedSolar
Power
notused notused
840
(±80)
between <100
Wind none none none none none
FuelTechnology
Non
Thermal
PhotovoltaicSolar none none none none none
Estimatedbasedonwithdrawalandconsumptionratios
Table1.2.Waterconsumptionreportedvolumesfordifferentfuelsandcoolingtechnologies.Aircoolingrequires
negligiblewaterandiscompatiblewithallofthetechnologieslisted[17,2527]
 CoolingTechnologiesWaterConsumption(gal/MWh)
Open
Loop
ClosedLoop
Reservoir
Closed
Loop
Cooling
Tower
Hybrid
Cooling
AirCooling
Coal
300
385
(±115)
480 between
60
(±10)
Nuclear
400
625
(±225)
720 between
60
(±10)
NaturalGasCombustion
Turbine
negligible negligible negligible negligible negligible
NaturalGasCombined
Cycle
100
130
(±20)
180 between
60
(±10)
IntegratedGasification
CombinedCycle
notused notused
350
(±100)
between
60
(±10)
Thermal
ConcentratedSolar
Power
notused notused
840
(±80)
between
80
(±10)
Wind none none none none none
FuelTechnology
Non
Thermal
PhotovoltaicSolar none none none none none
Estimatedbasedonwithdrawalandconsumptionratios
13
TypesofPowerPlants
Powerplantsuseavarietyofdifferentfuelsandtechnologiesforgenerationofelectricity.Thesefuels
andtechnologiescombinetoproduceelectricitywithdifferingefficiencies,asshowninTable1.3.The
observedpowerplantefficienciesinTexasarelowerthanthetheoreticaleffi ciencyvaluesduetoenergy
lossesinthepower
generationsystem(particularlytheoperationofpollutioncontrolsystems)and
startup/shutdownperiods.
Table1.3.Actu aloperatingefficienciesforpowerplantsusingdifferentfuelsandpowergenerationtechnologies.
[2729]
FuelType TexasGenerationEfficiency(%) MaximumReportedEfficiency
(%)
Coal Lignite:2634%
Subbituminous:2735%
IntegratedGasification
CombinedCycle:50%
NaturalGas SteamTurbine:28%
GasTurbine:26%
CombinedCycle:39%
CombinedCycle:50%
Nuclear 33%
ApproximatelyhalfoftheelectricitygeneratedintheUnitedStatescomesfromcoalfiredpowerplants,
asshowninFigure1.2.[12]Coalfiredthermoelectricpowerplantsconvertchemicalenergyfromcoal
intoelectricalenergywithanaverageoverallefficiencyof33%(26to35%inTexasduetovarious
plant
designandoperationalpatterns),asillustratedinFigure1.8onthenextpage.There mainderofthe
energyleavesthesystemasheatembodiedinexitingcoolingwaterorfluegas.Intheseplantscoalfired
boilersproducesteamthatdrivesteamturbines.Condensingthesteam(viaacoolingsystem)
asitexits
theturbineisakeytomaximizingtheenergyefficiencyoftheplant.Whenthesteamcondenses,a
rapidloweringofvaportoliquidspecificvolumesresultsinasustainedvacuumattheoutletofthe
turbineoutlet,referredtoasturbinebackpressure.Thecoolingsystemis
anintegralpartofpower
generationprocessandgreatlyinfluence s onplantperformance.
14
Figure1.8.Basicschematicofapulverizedcoalfiredpowerplantwithpercentageofenergyflowandmedian
waterwithdrawalandconsumptionforcoolingperMWhofelectricitygenerated.Only33%oftheincomingfuelis
convertedtoelectricity.[17,30]
NuclearpowerplantsgenerateroughlyonefifthoftheelectricityusedintheUnitedStates.[12]Much
likecoalfiredthermoelectricpowerplants,nuclearpowerplantsconvertatomicenergypresentin
nuclearfuelintoelectricalenergybyusingheattomakesteamtodrivesteamturbines.Theseplants
haveoverallthermal
energyefficienciesaveraging33%,showninFigure1.9onthenextpage.However,
unlikecoalfiredutilities,nuclearpowerplantsdonotemitfluegases,thusreleasingmorethermal
energyviathecoolingwater.Nuclearpowerplantstypicallydissipatetwiceasmuchoftheprimary
energysourceintheform
ofwasteheattocoolingwaterascomparedwithcoal(67%fornuclearin
Figure1.9comparedto33%forcoalinFigure1.8).However,thecoolingwaterrequirementsforsteam
condensationareonlyonefifthtoonethird(20to35 %)higher(seeTables1.1and1.2)becausenuclear
reactor
temperaturesarenotashighascoalcombustiontemperatures(300°Cfornuclearversus over
1,500°Cforcoal).[31,32]Thisadditionalwaterconsumptionisatradeoffforthelackofairemissions
fromnuclearpowerplants.
15
Figure1.9.Basicschematicofanuclearpowerplantwithpercentagesofenergyflowandmedianwater
withdrawalandconsumptionforcoolingperMWhofelectricitygenerated.[17,30]
Roundingoutthemajorelectricitygenerationfuelsisnaturalgas,whichproducesapproximately20%of
UnitedStateselectricityand49%inTexas.[11,12]Naturalgashasflexibilityasafuelasitcanbeused
togeneratesteamforasteamturbine,usedtofuelacombustionturbine,orused
inacombinedcycle
systemforelectricitygeneration.Acombustionturbine(orgasturbine)powerplant,showninFigure
1.10,isbasedoncombustionofgasinaturbineandtheresultinghightemperature,highpressuregas
spinstheturbinedirectly.[33]Thisprocessrequiresnegligibleamountsofcoolingwater
(otherthanthe
smallamountsneedfortheturbinebla desandothercomponents),sincetheturbineusesgasinsteadof
steam,andisapproximately33%efficient.
Figure1.10.Basic
schematicofanatural
gasturbinepowerplant
withpercentagesof
energyflow.[30]
Toincreasethe
efficiencyof
electricitygeneration
usingagasturbine,
newtechnology
knownasaheat
recoverysteam
generator(HRSG)has
beenincorporated,
16
resultinginnaturalgascombinedcyclepowerplantslikethatshowninFigure1.11.UsingtheHRSG,
wasteheatfromtheturbineexhaustgeneratessteamthatspinsasteamturbine,boostingoverall
powerplantefficiencytoapossibleefficiencyof50%.[30,34]Coolingwaterisrequiredtocondense
steamfromtheHRSG,yetthiscoolingwaterrequirementislowerperMWhgeneratedthanthatof
nuclearandcoalfiredpowerplantsusingonlyasteamturbine.
Figure1.11.Basicschematicofacombinedcyclepowerplantwithpercentagesofenergyflowandmedianwater
withdrawalandconsumptionforcoolingperMWhofelectricitygenerated.[17,28,30]
AnadditionaluseofthecombinedcyclepowerplantistheIntegratedGasificationCombinedCycle
(IGCC)powerplant,depicted onthenextpageinFigure1.12.IGCCpowerplantsusecoal,petroleum
coke,orpossiblybiomassasafuelsources.InIGCCplants,thefuelisnotdirectlycombusted,but
instead
isgasifiedwithsteamandcontrolledoxygenlevelsathightemperatureandpressure.Syngas,
theproductofgasification,iscomposedofcarbonmonoxideandhydrogen.Thissyngasisthen
convertedtocarbondioxideandhydrogenbysteamreformingoveracatalyst.Theresultinggasisthen
usedtofuela
combustionturbinethatgenerateselectricity.AnHRSGisalsoincorporatedintotheIGCC
process,generatingadditionalelectricitywithasteamturbine(makingitacombinedcycle),bringing
overallefficiencyto50%.[29]
Sincecoalisnotcombusted(andthehydrogengasiscleaneduppriortoitscombustion)intheIGCC
process,fewerairpollutantsareemittedwiththefluegas.Forexample,essentiallyallofthesulfur
presentinthecoalisremovedpriortocombustion,therebyavoidingtheformationofsulfurdioxide.
17
[29]IGCCdoeshaveaninherentprocesswateruseofapproximately30to60gal/MWhforthe
productionofsyngas,whichisapproximately10to20%ofthepowerplantwaterconsumptio n.[27]
Figure1.12.Basicschematicofan
integratedgasificationcombined
cycle(IGCC)powerplantswith
percentagesofenergyflowand
medianwaterwithdrawaland
consumptionforcoolingperMWh
ofelectricitygenerated.[27,29,
35]
Themarketsharefor
renewableenergysourcesfor
electricitygenerationis
growing.Amongthese
renewableenergy
technologiesiswind
generatedelectricity,shownin
Figure1.13.Thekineticenergy
ofblowingwindisconverted
intomechanicalenergyof
turningblades,mountedon
topofatalltower.Mechanicalenergyfromtherotating
turbinebladesisthenconvertedintoelectrical
energyusingagenerator.Sincetheprocessdoesnotuseasteamturbine,nocoolingwaterisrequired.
Windturbinesdonotconvertallthekineticenergyofthewindintomechanicalenergy,thusacertain
amountofwindisleftunconverted
3
.Thisunconvertedwind,alongwithgeneratorefficien cy,resultsin
atypicaloverallwindgeneratedelectricityefficiencyof50%.Verylittlewasteheatiscreatedinthe
generator,andsodedicatedcoolingis
notrequired.
Figure1.13.Basicschematicofwind
generatedelectricitywithpercentagesof
energyflow.[30]
Anotherrenewabletechnologyfor
electricitygenerationisthe
photovoltaic(PV)solarpanel,shown
onthenextpageinFigure1.14.Two
maintypesofPVsolarpanelsare

3
Themaximumtheoreticalefficiencyofhorizontalaxiswindturbinesis59%.
18
currentlyinuse:waferbasedsiliconpanelsand thinfilmpanels.WaferbasedsiliconPVpanelsusea
crystallineorpolycrystallinesiliconstructurecontainingphosphorusandboronatoms.Whensunlight
hitsthephosphorusandboronatoms,radiantenergyisconvertedintoelectricalenergy.[36,37]Thin
filmPVpanelsuseamorphous
silicon,cadmiumtelluride,orcopperindiumgalliumdiselenideasa
semiconductorlayeronathinstructure,alsoconvertingradiantenergyintoelectricalenergy.[38,39]
PVpanelefficiencyrangesfrom10to20%,withcommercialsystemsatthelowendofthisr ange.[30]
Thoughnocoolingwaterisneeded
duringsolarelectricitygeneration,thesurfaceofPVpanels mustbe
keptcleantomaintainefficiency.Processcleaningwaterconsumptionisapproximately 30gal/MWh,
minimalcomparedtothermoelectricpowerplants. [26]
Figure1.14.Basicschematicofphotovoltaicsolargeneratedelectricitywithpercentagesofenergy.[26,30]
AnalternativetoPVsolargeneratedelectricityisconcentratingsolarpower(CSP)orsolarthermal
generatedelectricitycollectingandconcentratingsolarenergyasapowerplantfuelsource.CSP
plants,ofthetypeshowninFigure1.15,generateelectricityinamannersimilartootherthermoelectric
powerplants.Usingconcentrating
mirrors,sunlightisconcentratedtoheatafluidthatinturncreated
steamviaaheatexchanger.Thesteamisconvertedtoelectricityviaasteamturbineasinother
thermalpowerplants.Steamisthencondensedusingacoolingtoweroraircooling.[25]
Figure1.15.Basicschematicof
CSPgeneratedelectricitywith
percentagesofenergyflowand
medianwaterwithdrawaland
consumptionforcoolingper
MWhofelectricitygenerated.
[25,30]
Eachofthepowergeneration
technologiespresentedabove
useswaterforprocesses,
coolingtocondenseprocess
steam,orcleaning.Notethat
allthermoelectricpower
plantsmaybecooledusing
19
aircooling,whichdoesnotrequirewater.Forinstance,theproposedTrailblazerEnergyCenter,near
Sweetwater,Texas,isapulverizedcoalfacilityforwhichTenaskais consideringaircoolingtoreduce
waterconsumption.[40]Currentlytwothermalpowerplants inTexas,bothnaturalgaspowered
combinedcycleplants,use
aircoolingtosomedegree.Thesepowerplantshaveoperatedatover45%
powerefficiencyin2006.[28]
20
Chapter2. EnergyforWater
Freshwaterisessentialforhumansurvivalandprosperity,whetherfordrinking,sanitation,industrial
use,irrigation,orpowergenerationandeverystageofthewatersupplyprocess hasenergy
requirements.Developing,pumping,andtreatingwaterforpublicwatersupplysystemsis acomplex
andresourceintensiveactivityrequiringsignificantamountsofenergy.
Aspressureonwaterresources
growswithpopulationgrowth, publicwatersuppliersareoftenlookingfurtherfromhomefornew
suppliesortotechnologies likedesalination.Waterisalsoamediumfortransportingwastes.Inorder
toprotectwaterquality,wastewaterdischargestosurfaceandgroundwatermustmeetvariousfederal
andstatetreatmentrequirementsandthosetreatmentprocessesrequireenergy.
PublicWaterSupplySystems
Publicwatersuppliesnotonlyprovidedrinkingwater,theyalsoarecriticalforarangeofcommercial
andindustrialactivity.Providingpublicwatersupplyrequirescollectionandconveyanceofsource
water,treatmentanddisinfection,thendistributiontoresidential,commercialandsometimesindustrial
customers.Manyendusesofwateralsorequirethat
thewaterbeheated.Eachofthesestepsrequires
energyinputs,typicallyintheformofelectricity.
SourceCollectionandConveyance
PublicwatersupplyintheUnitedStatescomesfromtwomainsources:surfacewater(streams,rivers,
lakes)andgroundwater(aquifers,wells).In2000,63%ofU.S.publicwater(27.3
billiongallonsperday)
originatedfromsurfacewatersources.[41]Movingrawwaterthroughpipelinesorcanalstothe
treatmentplantrequirespumping,exceptwheregravitydrivenflowispossible.
Groundwatersupplied37%ofsourcewaterforpublicwatersys temsin2000(16billion gallonsperday),
whiledomesticwateruse
selfsuppliedwater,usuallyinruralareaswas98%groundwaterthrough
theuseofwells.[42]Collectionandconveyanceofgroundwatertypicallyusesmoreelectricitythan
surfacewatersourcesinthesamelocationduetotheenergyrequirements ofpumpingwaterfrom
undergroundaquifers.Theseenergyrequirementsfor
pumpingvarywithwaterdepth:pumpingfroma
depthof120feet(ft)requires540kilowatthourspermilliongallons(kWh/Mgal),whilepumpingfrom
400ftrequires2000kWh/Mgal.[14]AveragegroundwaterwelldepthinTexasisnearly700feet.[43]
Generally,onethirdofthetotalenergyrequiredforcollecting,
treating,anddistributinggroundwateris
forwellpumping.[44]
Theenergyrequirementsforconveyingsourcewatertothetreatmentplantvarywithgeography;long
haulanduphillwaterpipelinesrequiremoreenergyforpumping,whilepartiallygravityfedsystems
requireless.Forexample,California,whichmoveswaterhundredsofmiles
overtwomountainranges,
requires1,330to9,930kWh/Mgal.[45]
Brackishgroundwaterandseawaterarebecomingmorecommonsourcesofrawwaterinareaswhere
freshwatersuppliesarenotreadilyavailable.Seawaterdesalinationplants areusually locatedcloseto
thecoastandsothereislittleenergyrequiredtoconvey
thewatertothetreatmentplant.Energy
21
requirementsforpumpingandconveyingbrackishgroundwateraresimilartothoseforfreshwater
aquifersources.
Treatment
Afterrawsourcewateriscollected,itistreatedtomeetdrinkingwaterqualitystandards (eventhough
onlyasmallfractionofthewaterisusedfordrinking).Atypicalsurfacewatertreatment
plant,shownin
Figure2.1,usesacombinationofphysicalandchemicaltreatmentprocessestoremovecontaminants
fromwater.Ofthetreatmentprocessesshownin Figure2.1,pumpingbetween processesrequires
nearlythreefourthsofthetotalelectricityusedforwatertreatment.Theactualtreatmentprocesses
flocculation,sedimentation,filtration,
anddisinfectionusetheremainingfourthofthetotalelectricity.
[44]
Figure2.1.Typicalwatertreatmentplantoperationsforconvertingsurfacewatersourcesintodrinkingwater
suppliesincludemanystepsandrequiresignificantenergyinputs.[44]
GroundwatertreatmentissimilartothatofsurfacewatertreatmentinFigure2.1.Dependingonraw
groundwaterquality,littletreatmentmayberequired:insomecasesonlytasteandodorremovaland
disinfectionareneeded.[44]
Desalinationdiffersfromtraditionaltreatmentforsurfacewaterorgroundwater.Thoughmany
desalinationtechniquesexist,
includingmultieffectdistillationandmultistageflash,themostcommon
technologyinusetodayisbasedonpermeablemembranetechnologyandisreferredtoasreverse
osmosis.[46]Reverseosmosistrainsaregenerallyassembledinacascadefashion,showninFigure2.2
onthenextpage,toimproveoverall
waterrecovery.Duringreverseosmosisdesalination,highpressure
pumpsarerequiredonthefeedsideofthemembranetoovercomeosmoticpressureandproduce
permeate,whichisthedesalinatedwater.Reverseosmosistrainsalsocreateawastestream,knownas
theconcentrate.[46]Forseawaterdesalinationsystems,theconcentratewastestream
canrangefrom
40to65%oftheincomingseawater,whilebrackishgroundwaterdesalinationconcentratestreams
rangefrom15to40%.[47]
22
Figure2.2.Reverseosmosis
cascadetrainforwater
desalination.[48]
Electricityrequirementsfor
publicwatersupplytreatment,
therefore,varywiththelevel
andtypeoftreatment,as
showninTable2.1.Notethat
theelectricityrequirementper
unitwater(inkWh/Mgal)listed
inTable2.1includesonly
sourcecollectionand
treatment,notpotablewater
distribution.Generally,the
electricityuseper unit
ofwater
treatedremainsrelativelyconstantwithwatertreatmentplantsize,soenergyefficiencydoesnot
improvemuchwithscale.[44]
Table2.1.Nationalaverageelectricityusefor
watercollectionandtreatmentusing
differentwatertreatmenttechnologies.
Distributionrepresentsadditionalenergyuse.
[44,45]
Pharmaceuticals,personalcareproducts,
andendocrinedisruptingcompoundsare
estimatedtobepresentindrinkingwatersuppliesforatleast41millionAmericans.[49]WhiletheEPA
regulatesthelevelsofmanyorganiccompoundsindrinkingwater,nostandardscurrentlye x istforlevels
ofsuchcontaminants.[50]Removingpharmaceuticals,personalcare
products,andendocrine
disruptingcompoundsfromwatersupplies,however,isanenergyintensiveprocess.Researchshows
thattherangeofremovalvariesamongstcontaminantswithdifferentlevelsoftreatment,spanning
fromnegligibletoover90%.[51]Higherlevelsofcontaminantremovalrequirecost‐andenergy
intensivetreatmentproces ses,suchas
activatedcarbonadsorptionandadvancedoxidationprocesses.
[51,52]Aswaterregulationsandstandardsbecomestricter,additionalenergyandinvestmentwill
likelybeneededtomaintaindrinkingwaterquality.
Distribution
Oncewaterhasbeencollectedandtreatedtoapplicablestandards,itmustbedistributedtoendusers.
Distributionrequirespumping,the
mostenergyintensiveaspectofwatersystems.AsshowninFigure
2.3,waterdistributionrepresents85%oftheenergyusefortypicalsurfacewatertreatment.[44]
WaterCollectionandTreatment kWh/Mgal
SurfaceWaterTreatment
220
GroundwaterTreatment
620
BrackishGroundwaterTreatment
3,9009,700
SeawaterDesalination
9,70016,500
Energy Use for Drinking
Water Treatment (kWh/Mgal)
Treatment
15%
Distribuon
85%
23
Figure 2.3. Naonal average percentage of energy consumed for
treatment (15%) and distribuon (85%) for typical freshwater
treatment. [44]
The energy requirements for water distribuon vary with the
distribuon of end users in relaonship to the treatment plant.
Addionally, aging infrastructure with old pipelines has leaks and
creates more fricon, requiring more electricity for water
distribuon. [44]
Residential Water Use
Residenal water end use also requires energy. In some
geographic areas of the U.S., water use in the home is one of the most energy-intensive aspects of the
water sector. [45] This energy comes in the form of electricity and somemes natural gas. Figure 2.4
shows the average uses of water for U.S. households.
Figure 2.4. Distribuon of average water use for U.S. homes. For indoor purposes, over half of the water used is
commonly heated, requiring energy. [53]
Of the common household water uses shown in Figure 2.4, over half – including clothes washers,
showers, faucets, baths, and dishwashers – generally draw a poron of heated water, which requires
energy for heang. In most households, energy use for heang water is second only to use of energy for
heang and cooling the home itself. [54] New, more efficient appliances, including low flow
showerheads and high efficiency clothes and dishwashers, can reduce heated water use, and also
Bath
2%
Dishwasher
2%
Clothes
Washer
25%
Toilet
31%
Shower
19%
Faucet
18%
Other
domesc
3%
Indoor
35%
Leak
6%
Unknown
1%
Outdoor
58%
U.S. Residenal Water Use
24
therebyreduceenergyconsumption.Ifresidentialconsumptionofheatedwaterisreducedbyathird,
thenelectricityconsumptioninthestatewouldbereducedby1to3billionkWh.[55]
Afterresidentialuse,nearlyallofthewaterusedindoorsleavesaswastewater,eventhoughmuchofit
issuitableforreuseforirrigationorotherapplications.Treatingthiswastewateralsorequiresenergy,
asdiscussedinthefollowingsection.
WastewaterSystems
Likewatersystems,wastewatersystemsmustalsoabidebyfederalandstateenvironmental
regulations.Treatingrawsewagetowastewatereffluentstandardsrequireselectricityforcollection
andconveyance,treatment,anddischarge.
CollectionandConveyance
Municipalwastewatertreatmentplantsutilizegravityforrawsewagecollectionandconveyance
wheneverpossible,reducingtheelectri cityrequired
forpumps.Thoughwastewaterconveyancemay
requirefewerpumpsthanwaterdistributioninsomeareas,wastewaterpumpsarelessefficientdueto
pumpingbothsolidsandliquids.[45]
Treatment
Wastewatertreatmentisbasedonphysicalsteps(suchassettlingandscreening)aswellasbiological
processes,suchasusingbacteria
tobreakdownorganicmaterialinthesewageandchemicalreaction
stepstoremovenutrientssuchasnitrogenandphosphorus.Atypicaladvancedwastewatertreatment
plant,whichisgenerallyrequiredtomeetcurrentwaterqualityregulationsisshowninFigure2.5.
Figure2.5.Typicalplantoperationsforadvancedwastewatertreatment.[44]
OftheprocessesshowninFigure2.5,overthreefourthsofthetotalelectricityrequiredforisusedfor
solidsprocessingdiffusedairaeration,nitrification,gravityandflotationsettling,anaerobicdigestion,
25
anddewatering.Over30%oftheelectricityrequiredgoestowardaerationaloneduetotheuseof
energyintensiveblowers.[44]
Asthelevelofwastewatertreatmentadvances,theelectricityrequirementsperunitofwastewater
increaseaswell,asshowninTable2.2.Thelargeenergyintensityincreasefrom
tricklingfilterto
activatedsludgetreatmentreflectsthelargeelectricityrequirementforblowersusedduringaeration.
Table2.2.Generalelectricityusefor
differentwastewatertreatment
technologies.Moreadvancedtreatment
thatmeetsstricterenvironmentalstandards
requiresmoreenergy.[44]
Unlikewatertreatmentplants,
electricityrequiredperunitofvolume
treatedvarieswithwastewater
treatmentplantsize,reflectedinTable
2.3.Largerwastewatertreatment
plantsprovidesignificanteconomiesofscaleandrecenttrendsreflectamovetowardlargercapacity
wastewatertreatmentplantsforthatreason.[44]
Table2.3.Variationinunitelectricityconsumptionfordifferentsizesofwastewatertreatmentplants.Larger
wastewatertreatmentplantsexhibiteconomiesofscalewithlowerenergyrequirementspervolumeof
wastewatertreated.[44]
ElectricityConsumption(kWh/Mgal)
Wastewater
TreatmentPlant
Size
(MGD) TricklingFilter
Activated
Sludge
Advanced
Wastewater
Treatment
Advanced
Wastewater
Treatment
with
Nitrification
1 1,811 2,236 2,596 2,951
5 978 1,369 1,573 1,926
10 852 1,203 1,408 1,791
20 750 1,114 1,303 1,676
50 687 1,051 1,216 1,588
100 673 1,028 1,188 1,558
Discharge
Followingtreatment,effluentisdischargedintoreceivingwaterbodies.Manycitieslocatewastewater
treatmentplantssoastominimizetheenergycostsofpumpingtreatedeffluent.
WastewaterTreatment kWh/milliongal
TricklingFilter
950
ActivatedSludge
1,300
AdvancedTreatmentwithout
Nitrification
1,500
AdvancedTreatmentwith
Nitrification
1,900
26
Chapter3. EnergyWaterNexusinTexas
Asahighlypopulated,industryintensivestate,Texasrequiressignificantamountsofbothenergyand
water.Thischapterexaminescurrentresourceuseandenergywaternexusissues.FutureTexastrends
arediscussedinChapter4.
ElectricityGenerationfromTexasPowerPlants
Texas’258powerplantshavethecapacity
toproduceover110Gigawatts(GW)of
power.Actualgenerationtotalsabout400
terawatthours(TWh),or400x10
9
kWh,
annually.[28]Thesepowerplants,shownin
Figure3.1,arelocatedmostlyineastTexas,
withafewlargeplantsinwestTexas.
Figure3.1.Electricitygenerationcapacity(kW)
fromTexaspowerplants.Totalelectricity
generationcapacitystatewideisover110GW
(110,000,000kW).[28]
Mostpowerplantsarelocatedinthe
easternhalfofthestatetobecloseto
populationcenters,ligniteresources,and
coolingwater.Texasriversgenerallyflowto
thesoutheast,andeastTexasreceivesmore
rainfallthanwestTexas,resultingin
additionalsurfacewateravailabilityinthe
easternhalfofthe
state.OfTexaspower
plants,22plantswithgenerationcapacities
totaling9,400MWapproximately8%of
totalTexasgenerationcapacityusegroundwaterforcoolingwithcoolingtowers,mostofthosebeing
locatedinthewestTexaspanhandleregion.Therestusesurfacewatersourcesoraircooling.
WaterConsumptionandWithdrawalsofTexasPowerPlants
ThermoelectricpowerplantsinTexasconsumewaterforcooling,asshownonthenextpageinFigure
3.2.WaterconsumptionbyTe xaspowerplantstotalsover157,000milliongallons(482,100acrefeet)
annuallyenoughwaterforthemunicipaluseofover3millionpeopleforayear,eachusing140
gallons
perpersonperday.Thistotalwasestimatedbasedondataregardingwaterintake,diversion,and
returnflowsfromtheTexasWaterDevelopmentBoard(TWDB)andTexasCommissionon
EnvironmentalQuality(TCEQ).[28]Asexpected,highvaluesofwaterconsumptionperkWhinFigure
3.2correspondtoclosedloop
coolingsystems,whichconsumealargepercentageofwaterwithdrawn,
asdiscussedinChapter1.
27
Figure3.2.Waterconsumptionfor
thermoelectricpowergenerationinTexas.
Totalwaterconsumptionforelectricity
generationstatewideisover157,000million
gallons(482,100acrefeet)annuallyenough
waterforover3millionpeopleforayear,each
using140gallonsperpersonperday.[28]
Powerplantsareresponsibleforan
estimated2.5%ofthetotalwater
consumptionforTexas.[56]This
percentagereflectswaterconsumption
onlyanddoesnotincludewaterwithdrawn
foropenloopcooling.Waterwithdrawal
forcoolingismuchlargerthanwater
consumption,especiallywithopenloop
cooling.Understandingandaccountingfor
thedifferencesbetweenconsumptionand
withdrawalisimportantforaccurate
planningandmanagement.Specifically,
thelargeamountsofwaterthatneedtobe
withdrawnforcoolingintroduceavulnerabilityintothesystem:ifdroughtcreatesawatershortage,
thenpowerplantsmightbeforcedtoshutdown.Furthermore,reservoirsused
forclosedloopcooling
confinewaterthatotherwisecouldbeusedforotherpurposesdownstream.
EnergyforWaterandWastewaterTreatmentSystemsinTexas
SurfacewaterpermitsforpublicwatersupplyareconcentratedineastTexas,asshownonthenextpage
inFigure3.3,asaresultofavailabilityandpopulation.Theseallocationsrepresentrightstodivertor
storesurfacewater,whichisthentreatedtoapplica blestandardsinawatertreatmentplantand
distributedforuseinresidential,commercialandsometimesindustrialestablis hments.
28
Figure3.3.Surfacewaterpermitsfor
municipalwatersupply.Decreasingrainfall
fromeasttowestTexasalsodecreasessurface
wateravailability.[57]
Largecitiesandriverauthoritiesgenerally
holdthelargestmunicipalsupplyrights.
Riverauthorities,quasigovernmental
entities,generallysellwaterwholesaleto
citiesfortreatmentanddistributionas
publicwatersupply.Some,suchasLower
ColoradoRiverAuthority,alsotreatand
distributewaterforpublicsupply
themselves.
AccordingtotheState
WaterPlan,public
watersupplyinTexascurrentlyaccounts
forapproximately1,470,000million
gallons(4.5millionacrefeet)ofwater
eachyear.[56]ElectricityuseforTexas
waterandwastewatersystems,however,
isnotcurrentlymeasureddirectly.Consequently,electricityconsumptionforTexaswatersystemsmust
beestimatedbasedonnational
averageelectricityusepervolumeofwatertreated,asshowninTable
2.1.UsingcurrentwaterflowratesfromtheStateWaterPlanandnationalaveragevaluesforenergy
perwatervolumetreated,Texasusesan estimated2.1to2.7TWh/yrforpublicwatersupplysystems,
accountingforabout1.5to
1.9%ofTexasindustrialelectricityuseand0.5to0.7%oftotalelectricityuse
annually.Thisislowerthanthenationalpercentagesforelectricityuseforwatersystemsduetothe
overallhigherelectricityconsumptioninTexasindustries.[11]Directlymeasuringelectricity
consumptionofTexaswatertreatmentplants,aswell
astheelectricityneededforsourcewater
collectionandconveyance,wouldprovideamorereliablepictureofenergyrequirementsforwater
treatment.
Municipalwastewatertreatmentplantsaregenerallydistributedaccordingtopopulationandarethus
concentratedineasternandcentralTexas,asshownonthenextpageinFigure3.4.
Over76%ofthe
municipalwastewatertreatmentplantsinTexaseachtreatflowsof1milliongallonsperday(mgd)or
less.LargerwastewatertreatmentplantsservingcitiessuchasDallas,Houston,SanAntonioandAustin,
however,treatflowsupto200mgd.
29
Figure3.4.Municipalwastewatertreatmentflow
forTexaswastewatertreatmentplants.Over
76%ofthewastewatertreatmentplantsinTexas
aresmalllessthan1mgd.[58,59]
Similarlytowatertreatmentplants,
informationonenergyuseatTexas
wastewatertreatmentplantsisnotreadily
available.Thus,electricityforwastewater
treatmentmustbeestimatedbasedon
nationalaveragevaluesforenergyper
volumeofwastewatertreatment,givenin
Table2.2.However,asdiscussedinChapter
2,energyrequiredper
volumeof
wastewatertreatedvarieswithwastewater
treatmentplantcapacity,asshowninTable
2.3.Usingenergypervolumeofwastewater
treatedforspecificplantcapacities,total
energyforwastewaterwasestimatedfor
technologiesrangingfromtricklingfiltertreatmentatthelowendtoadvancedtreatmentwith
nitrificationatthe
highend.Usingthisapproach itisestimatedthat1.1to2.2TWh/yrisrequiredfor
wastewatersystemsinTexas,amountingto0.8to1.5%ofTexasindustrialelectricityuseand0.3to
0.5%oftotalelectricityuse.
Combiningtheseestimatesforwaterandwastewatertreatment,Texaswaterandwastewater
systems
require3.2to4.9TWhofelectricityannually.Withcurrentelectricitygenerationof400TWh/yr,water
andwastewatersystemsuse0.8to1.2%oftotalTexaselectricityand2.2to3.4%ofindustrialelectricity
use.[44].DirectmeasurementandreportingofelectricityuseinTexaswaterandwastewater
treatmentplants
wouldprovideamoreappropriatebasisforplanning,management,andpolicy.
30
Chapter4. FutureEnergyandWaterUseinTexas
ThepopulationofTexasispredictedtodoubleby2060,fromthecurrent23milliontoabout46million
by2060.[56]PopulationinTexashasexperienceddramaticgrowthsince1850,showninFigure4.1.
U.S.CensusprojectionsinFigure4.1suggestnearlyexponentialpopulationgrowthbetween2000and
2030.[60]
Withoutimplementationofsignificantenergyandwaterconservationandefficiency
increases,energyandwaterconsumptionarelikelytogrow.
Figure4.1.Texascensuspopulation
withprojectionsto2030.[60]
Undera“businessasusual”
scenario,thispopulation
increasewilltranslateinto
greatlyincreaseddemandfor
bothpowerandwater.The
centralchallengeforTexas
policymakersishowtobalance
thisprojectednewdemandwith
theneedtoensuresustainable
useoflimitedwaterresources
andprovidepowerina
manner
thatprotectsairqualityandmeetsthelikelyrequirementsofnewfederallegislationtoaddressclimate
change.Thischallengeismademoredifficultbytheinterconne ctionsbetweenwaterandenergyand
thetradeoffsinvolvedinselectingvariouspowerandwatersupply options.
ElectricityDemandProjections
UsingthecurrentfuelmixforpowergenerationinTexas,a“businessasusual”powerdemandscenario
wasprojectedto2018(Figure4.2).Thisscenariodoesnotaccountforsignificantreductionsindemand
thatcouldbeattainedwiththeimplementationofadvancedefficiencymeasures, nordoesitreflect
changesinfuel
mixthatwouldlikelyresultfromacarboncapandtradeorcarbontaxsystem.
31
0
50
100
150
200
250
300
350
400
450
500
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
TWh
Texas Total Electricity Generation by Fuel - BAU
Nuclear Coal NGCC NG-ST NG-GT Wind Non-wind Renewable On-site industrial
Figure4.2.ProjectionsforTexaselectricitygenerationunderabusinessasusual(BAU)scenarioshowgrownto490
TWhby2018.[61]
Inthebusinessasusual(BAU)scenarioincludingcurrentpowergenerationandannouncedfuture
powerplants,totalelectricitygenerationincreasestonearly490TWhannuallyby2018.Thefuelmix
forthisscenarioassumesnuclearpowerplantscurrentlypursuingpermittingwillbebuilt.Italso
assumesrapidlyexpandingwindgeneratedelectricity.
Sincenaturalgaspowerplantsprimarily
representpeakelectricityloadgenerati ngpotential,electricitygenerationfromtheseplantsremains
relativelyconstantthroughouttheprojectedscenario.Severalnewpowerplantsareproposedfor
constructioninTexasby2015.The“Onsiteindustrial”categoryisthatelectricitythatisgeneratedat
industrialfacilities
fortheirownuse,buttheindustrialsectoradditionallybuyselectricityfromthe
electricgrid.
Figure4.3onthenextpageprojectsfuelmixunderanalternativehighrenewables”scenario.Ahigh
renewablescaseispossiblethroughlegislationthatpromotesahigherrenewablefuelsstandardor
implementationofacarbontax
orcapandtradesystem.Thesetypesoflegislationpromotesources
suchaswind,solar,biomassandnuclear.ThescenarioinFigure4.3doesnotaccountforsignificant
reductionsindemandthatcouldbeattainedwiththeimplementationofadvancedefficiencymeasures,
nordoesitaccountforotherregulatory,economic
orotherfactorsthatmightaffectfuelmix(e.g.the
availabilityoffinancingorwastedisposalfornuclearplants).Coalgeneratedelectricityisprojectedto
decreasesomewhatunderthehighrenewablesscenarioifacaponcarbonisestablishedthrough
federallegislation,whilebothwindandnuclearpowerareprojectedto
increasedramatically.
32
0
50
100
150
200
250
300
350
400
450
500
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
TWh
Texas Total Electricity Sales by Fuel -
High Renewables Projection
Nuclear Coal NGCC NG-ST NG-GT Wind Non-wind Renew On-site Industrial
Figure4.3.ProjectionsofTexaselectricitygenerationwithalargeincreaseinrenewableenergygenerated
electricityisshownabove.[61]
Itisdifficulttoprojecthowthevariouselectricityge nerationscenariosinFigures4.2and4.3might
affectwaterdemand,sincesuchdemandishighlydependentnotonlyonthefuelmix,butalsoonthe
typeofcoolingtechnologyselectedforparticularplants.Whatisclear,however,isthatwithout
implementationofadvancedenergyefficiencymeasures,electricitydemandinTexaswillgrowrapidly
andtherewillbepressuretosupplypartofthatnewdemandthroughnuclearplants,evenundera
“highrenewables”scenario.Thisscenariocouldhavesignificantimplicationsforwatersupplysince
nuclearplantsconsumemorewaterthan
similarlysizedfossilfuelplants. Whilenonuclearpower
plantscurrentlyuseaircooling,thePaloVerdenuclearpowerplantsinArizonausereclaimedwater.
Carboncaptureandstorage(CCS)systemsareapossibilityforthefuture,especi allyinresponseto
potentialcarbonlegislationasataxorcapandtradescenario.Carbondioxide(CO
2
)canbecaptured
fromfluegasesinexistingpulverizedcoalpowerplantsbyretrofittingCO
2
scrubbers.Suchscrubbers
captureCO
2
usingchemicalsolvents,afterwhichthesolventthenundergoesthermalcyclingtoremove
CO
2
,whichisthentransportedandstored.[29]CCSsystemsallowforpowergenerationusingcoal
whileconcurrentlyreducingcarbonemissionstotheatmosphere.TheseCCSsystemsdo,however,
increasewaterconsumptionratesofpowerplants,intermsofgallonspernetgeneration,dueto:1)
theparasiticpowerlossfrom
theuseofsteamtoregeneratethesolvent;2)thepowerrequiredto
compressCO
2
toasupercriticalstateforpipelinetransport;3)additionalcoolingrequirementsofthe
33
carbonstrippingprocess;and4)additionalelectricityforpumpingcollectedCO
2
intostorage.[28]These
tradeoffsbetweenairqualityandwaterconsumptionmayplayanincreasinglyimportantroleinthe
future.
WaterDemandProjections
The2007StateWaterPlanprojectsthatmunicipalwatersupplydemandwillgrowto8.3millionac
ft/yearby2060,fromacurrentlevelofabout4.5millionacft/year.[56]Whilesomeimplementationof
increasedmunicipalwateruseefficiencyisincludedinthisprojection, muchmoreadvanced
conservationispossible
andwouldgreatlyreducedemand.Forexample, arecentanalysisbytheTexas
StateComptrollershowsthatseveralcitiesprojectonlyminorornoreductioninpercapitawater
demandby2060.[62]
Figure4.4.ProjectionsfromtheStateWater
Planshowalargeincreaseinmunicipal
waterdemandfrom2000to2060.[56]
TheStateWaterPlanproposesthat
muchoftheprojecteddemandbemet
throughconstructionofnewreservoirs
thatwouldmovewaterfromeastTexas
toDallasandothercentralTexascities.
Italsoenvisionsseveralnewmajor
pipelineprojectstobringwaterfrom
ruralareastocities.
Newsupplyproposals
basedonmovingwaterlongdistancescreatepotentiallysignificantenergy
demands,thoughinsufficientinformationexistsatthistimetoquantifytheincreasedelectrical
generationcapacityrequiredforspecificprojects
4
.Inaddition,increasedpublicwatersupplyuse
(howeverthewaterissupplied)willresultinincreasedelectricityusefortreatmentanddistributionand
forwastewatertreatment.
ConservationofEnergyandWater
Giventheenergywaterinterrelationships,waterconservationandenergyconservationaresynonymous
andareagoodstartingpointforrobustpolicyformulation.Specifically,conservingwaterreducesthe
electricityneededtocollect,treat,anddistributewater,aswellastoconvey,treat,and discharge
wastewater,inmanysituations.Conservingelectricitysavesenergy
andalsothewaterneededtocool
powerplantswhilethatelectricitywasgenerated.

4
Thesecondvolumeofthisreportwillexamineseveralproposedwatersupplycasestudiesinmoredetail,
includingquantificationofenergydemands.
0
1
2
3
4
5
6
7
8
9
10
1990 2000 2010 2020 2030 2040 2050 2060 2070
Muncipal Water (million acft/yr)
Year
MunicipalWaterDemandProjections
34
Thesecondvolumeofthisreportwillhavemoredetailedanalysisonthemutualbenefitsofwaterand
energyconservation,howeversomepreliminaryresults aresharedhere.Becauseelectricity
consumptionislinearwiththeamountofwaterandwastewaterthataretreated,distributedand
collected,itcanbeseen
thatreducingwaterflowsthroughtheseenergyintensivestepsreducesthe
amountofelectricitythatis required.Ifmunicipalwateruseandwastewaterflowsarereducedby10%,
thestate’sdemandforelectricitywouldgodownby320to490millionkWhatthewater/wastewater
sectorsalone.Inaddition,if
theresidentialsectorreducesitsuseofheatedwaterbyathird,thenthat
wouldsaveapproximately1to3billionkWhofelectricityannually.[55]Reducingenergydemandalso
reducesdemandforcoolingwateratpowerplants:reducingoverallelectricitygenerationinTexasby
10%couldreducewaterconsumptionby
asmuchas15,000milliongallonsofwaterperyear,depending
onwhichpowerplantsreducetheiroutputtoaccommodatethelowerdemand.
Inadditiontoincreasedwaterefficiency,waterreuseisanoptionforsavingwaterandenergy.Some
wateruses,suchaslandscapeirrigationandtoiletflushing,do
notrequirewatertobetreatedto
drinkingwaterstandards.Onealternativetowateringlawnsandflushingtoiletswithdrinkingwateris
usingreclaimedwater.Reclaimedwateriseffluentfromawastewatertreatmentplant,trea tedwitha
processlikethatshowninFigure2.5withadditionaltertiaryfiltrationbeforereuse.Though
reclaimed
waterisnotnecessarilysafefordrinking,additionalfiltrationremovescontaminantsthatposethreatsto
humanhealthduringunintendedexposure.[63]Whilethisadditionalwastewatertreatmentrequires
approximately120kWhpermilliongallonsfortertiaryfiltration,useofreclaimedwatersaves
approximately1,400to1,800kWhofelectricityper
milliongallonsneededforcollecting,treating,
disinfecting,anddistributingdrinkingwaterfornonpotablesuses.[44]
Inadditiontosavingenergy,waterreusecanaugmentexistingwatersuppliesandisgenerallyamore
costeffectiveoptionthanacquiringnewwatersupplies.[64]Varyinglevelsofadditionaltreatmentare
necessary,dependingon
thewaterreuseapplication.
Reclaimedwatercanalsobeusedtoartificiallyrechargegroundwateraquifersthroughsurface
spreadinganddirectinjection.Surfacespreadingapplyingreclaimedwatertothelandsurfaceto
promotewaterseepageandpercolationintotheaquiferrequireslittletonoadditionaltreatmentor
energydue
tothenaturalfiltrationofsoil.Directinjectionusingwellstointroducereclaimedwater
intotheaquiferwatertablehowever,requiresadditionaltreatm entbeyondadvancedwastewater
treatment,usuallyenergyi ntensivemembranewatertreatmenttoremovepotentialpathogens.[63]
Reclaimedwatercanalsobereusedtosupplementpublicdrinkingwater
supply.Followingadvanced
wastewatertreatment,reclaimedwateristreatedusingmembranesorotheradvancedtechnologyto
removepathogensandtracecontaminantsandisthenaddedtoanexistingsurfacewatersource,such
asareservoir,orfeddirectlytoawatertreatmentplant.Thoughthistypeofwaterreusehas
sometimesignitedadversepublicperceptionregardingqualitythe“toilettotap”ideareclaimed
waterhasahigherqualityaftermembranetreatmentthanmanyrawwatersources.[63]Infact,
drinkingwatersourcesforover26millionpeopleintheUnitedStatescontainbetween5and100%
treatedwastewatereffluent
fromupstreamdischargeduringlowflowperiods.[64]Somewater
35
strainedsocietiessuchasSingaporealsousereclaimedwaterasapublicsupplywithoutadversehealth
effects.
Waterreuseconserveswaterand,insomeapplications,conservesenergybynottreatingwaterfornon
potableusestodrinkingwaterstandards.Inotherapplications,additionalenergyintensivetreatment,
suchasmembrane
filtration,isnecessarytoprotecthumanhealthduringwaterreuse,requiringupto
4,000kWhpermilliongallons.[45]Yetthisenergyinvestmentforwaterreuseisstilllessthanthe
energyneededforseawaterdesalinationat9,700to16,500kWhpermilliongallonsorlonghaulwater
transferwhen
watersuppliesaredepleted,over6,100kWhpermillion gallonsfortheColoradoRiver
AqueducttransfersysteminCalifornia.[45]
36
Chapter5. PolicyDiscussion
AsTexasconfrontsthechallengesposedbyclimatechange,decisionsabouthowtosupplyenergyand
watertoourstate’sgrowingpopulationshould nolongerbemadein isolationfromeachother.The
challengeswouldbenefitfromrecognizingthedeepinterconnectionsandtradeoffsinvolvedin
decidinghowtomeet
powerandwaterneedsinamoreresourceconstrained21
st
century.
Carbon,Water,andEnergy:TensionsandPolicyTradeoffs
Becauseenergyandwaterareinextricablylinked,limitsorincreasingdemandsononeresourcecan
affecttheother.Furthermore,becauseofthepowersector’scarbonemissions,increasingtheenergy
efficiencyofelectricpowergenerationbothlowerstheseemissionsandreduceswaterconsumption.
Sincecarbonemissionsinpartdriveclimatechange,which
impactsthehydrologicalcycle,itisanother
linkagebetweenenergyandwater.Implementationofnextgenerationpowerplanttechnologiessuch
asultrasupercriticalcoalandintegratedgasificationcombinedcycleplants(aswellascombinedcycle
naturalgastechnology)hasthepotentialtoincreaseenergyefficienciesby25to50%over
thosefor
traditionalpulverizedcoalplantswithpollutioncontrols.Subsequently,thecarbonemissionsandwater
useperMWhofgeneratedelectricitywouldgodown.
Increasedefficiencyinwaterusagealsocanplayaroleinreducingcarbonemissions.Providingwater
fordomestic,agriculturalandindustrialconsumptionrequiresenergy,whichemitscarbon.
Traditionally
loweringwaterusagesimultaneouslylowersenergyconsumption,whichlowerscarbonemissions
(thoughsuchreductionshavealwaysbeenoverwhelmedbyoverallgrowthintheusageofbothwater
andenergy).Forexampleoverthelast50yearsthewaterefficiencyofpowerproductionhassteadily
increasedwhileatthesame
timebothelectricpowerproductionandthewaterusedforpower
productionhassteadilyincreased.
Despitethesynergiesofconservation,weareenteringanerainwhichpublicpoliciesdesignedtoreduce
wateruseforenergymayleadtoincreasesincarbonemissions.Conversely,policiestoreducecarbon
emissionsmightincrease
wateruse.And,energypolicies,suchaspromotionofalternativebiofuelsfor
transportationhavecompetingeffectsonwateruse.
Movingforward,theseinterrelationshipsmustbeidentifiedandunderstoodbeforeimplementingpublic
policyproscriptionsthatbenefitonecomponentofthiscomplicatedcarbonwaterenergyrelationship
whileaccidentallyundermininganother.(Issuesrelated
tothelinkagesbetweentransportationfuels
andwaterwillbediscussedinaforthcomingreport.)
EnergyPoliciesHaveMixedWaterImpacts
AnalysisofcurrentlongtermprioritiesinU.S.energypolicysuggestsamixedoutlookforfutureimpacts
oftheenergysectoronwaterresources.TheEnergyPolicyActof2005
(EPACT2005)andtheEnergy
IndependenceandSecurityActof2007(EISA2007)bothprioritizeddevelopmentofdomesticsourcesof
energy,includingrenewablepower,nuclearpower,andunconventionaltransportationfuels.
37
BecausetheelectricpowersectorisresponsibleforthelargestwithdrawalsofwaterintheU.S.,changes
tothepowersectorcanhaveasignificantimpactontheavailabilityofwaterresources.Specifically,
increasingthemarketpenetrationofrenewabletechnologiessuchassolarphotovoltaics(PV)andwind
turbineswill
lowertheuseofwaterbythepowersectorbecausethosetechnologiesdonotrequire
cooling.Concentratedsolarpower(CSP)systemsaremorecompatibleforlargescale,centralized
powergenerationthansolarPVsystemsandtheycurrentlyareconsiderablylo wer incostperunitof
electricpower.Thethermalconversion
ofradiantenergyfirsttosteamandthentoelectricityviaa
steamturbine,however,canrequirecoolingwateratrates(gallonsperkWh)higherthan coaland
nuclearpowerplantsifusingpurewetcoolingtowers.However,air‐andhybridcoolingsystemsforCSP
couldbeimplementedinTexas.
The
positivewatereffectsofrenewablepowermightalsopossiblybeoffsetbyprojectedincreasesin
nuclearpowerinstallationsdrivenbycarbonlimits.Nuclearpoweristhemostwaterintensiveformof
conventionalpowergeneration,andaircooling isveryunlikelytoeverbeusedfornuclearpowerplants.
Furthermore,the
economicenvironmentthatisconducivetorenewablesources,namelyhighpricesfor
carbonemissionsandnaturalgas,isalsogoodfornuclearpower.Thus,itispossiblethattheseformsof
powerwillgrowintandem.Consequently,theneteffectonwaterresourcesfromfuturechangesinthe
electricpowersector
duetocarboncontrolpoliciesaredifficulttopredict.
WaterPoliciesMightHaveDetrimentalCarbonImpacts
Althoughtheimpactoflongtermenergypoliciesonwaterconsumptionisnotclear,somewater
policiesunderconsideration mayhavedetrimentalimpactsoncarbonemissions.Thesepoliciesinclude:
1)apushfornew
watersupplyfromdistant,lowqualitysources,and2)strictertreatmentstandardsfor
waterandwastewater.
Somecommunitiesmayturntodesalinationtomeetnewwaterdemand.Desalinationofseawaterisa
droughtresistantwatersupply,howeverwithcurrenttechnologiesthisstabil itycomeswithalarge
energycost.InTexasdesalination
ofbrackishwaterisalreadyunderwayorisbeingimplementedasa
portionofthepublicwatersuppliesforthecitiesofSanAntonio,ElPaso,andLubbock.
Finally,morestringenttreatmentstandardsfordrinkingwaterqualityandwastewatermaybecome
addedtofederalregulations,inparticulartoremediatethe
presenceofpharmaceuticalsandother
contaminantsforwhichtherearenocurrentstandards.Watertreatmenttoremovelowconcentration
pollutantsistypicallyanenergyintensiveprocess.Thus,raisingthetreatmentstandardsleadsto
increasedenergyconsumptionbywaterandwastewatertreatmentplants,whichnominallyyields
increasedcarbonemissions.
CarbonPoliciesMight
HaveDetrimentalWaterImpacts
Thereisageneralconsensusamongelectricpowercompaniesthatimplementationofanationalcap
andtradeprogramoracarbontaxisinevitableintheU.S.inthenearfuture.Althoughsomeoutcomes
fromimplementationofnewcarbonpolicieswillreducewaterusage(suchas
greaterpenetrationof
windpower,anddeploymentofphotovoltaicgeneration)atleastforthefirstfewdecadesitispossible
38
thesewatersavingswillbe
counteractedbyincreasesinwater
consumptionrelatedtocarbon
capture,deploymentofconcentrated
solarandincreasednuclear
generation.Asnotedbefore,carbon
policieswillfavorexpansionof
existingnuclearpowerinstallationsas
wellasthepermittingand
constructionofnewones.Because
nuclearpower
plantsarewater
intensive,anincreaseinthecapacity
ofnuclearplantswilllikely leadto
greaterwaterusebythepower
sector.
Carboncaptureandsequestration
(CCS)willalsohavedirectimpactson
waterwithdrawalandconsumption
bytheelectricpowerindustry.If
carboncaptureisimplementedata
largescalethroughretrofitting
existingfossilfueledpowerplants,the
waterdemandsbythepowersector
couldincreasedramatically.Post
combustioncarboncapturesystems
basedonaminesreducenetpower
plantefficiencies,possiblybyasmuch
as25to30%,suchthatinmakingthe
sameamountofelectricityavailable
for
thegrid,moregrosspowerand
heatmustbegeneratedthus
increasingtheamountofwaterused
proportionally.Inthiscase,itis
possibleadditionalpowerplant
capacitywouldbebuilttomakeupfor
lostcapacity.Ifimplementationof
CCSleadstoconstructionofnew
powerplants,theymight
bebasedon
moreenergyefficientpowerplant
technologiessuchassupercriticalcoal
ClimateChangeImpactsonWaterResources
Manyunknownsstillexistregardingtheimpactofclimatechangeonwater
resources.Applyingpredictionsofrisingglobaltemperaturetoregional
climateandweathermodelsisarelativelynewfield,andmanyregionshave
yettohaveanyresearchdirectlyfocuseduponthem.Furtherapplyingthese
predictionsaboutlocalimpactsto
waterresourcesissuesrequiresonemore
stepofprediction.Havingsaidthis,thereareseveralfactorsthatscientists
agreewillshapeboththequalityandquantityofwaterresourcesoflocal
governments.
Climatechangemayactasaforcingfunctionthatfurtherintertwinesand
strainstheenergywaternexus.Specifically,
greenhousegas(GHG)
emissionsfromenergyusearealeadingcauseofclimatechange.One
importantaspectofclimatechangeisitspotentialfornegativeimpactonthe
watercycle.Discussionofclimateeffectsoftenfocusesontherisksofrising
sealevels,butitistheriskofchangesto
thehydrologicalcyclethatshouldbe
ofequalorgreaterconcern.Theseeffectsarehardtopredict,butitis
expectedthathighertemperaturescouldinduceseveralconsequences,
includingmoreprecipitationasrainratherthansnowfall,movingthe
snowmeltseasonearlier(andtherebyaffectingspringwaterflowsforrivers
like
theRioGrandeortheRedRiver),increasingintermittencyandintensity
ofprecipitation,andraisingtherisksoffloodsanddroughts.[10]Whilemost
ofTexasisnotveryvulnerabletochangesinsnowpatterns,thesealevel
risescancausecontaminationofgroundwateraquifersfromsalinewater
intrusionnearthe
coasts.Thesechallengescanbemitigatedbyutilizing
deeperaquifers,movingwaterfartherwithlonghaultransfersystems,or
treating/desalinatinglowerqualitywatertomakeitdrinkable.Eachofthese
approachesinvolvesgreaterenergyexpendituresforeachgallonofwater.
Withatypicalenergymixoverthenextfewdecades,
theseenergy
expendituresforwatertreatmentandconveyancewillreleaseadditional
greenhousegases,whichintensifythehydrologicalcyclefurther,potentially
compoundingtheprobleminaselfreinforcingfeedbackloop.
Figure5.1.
Theenergyclimate
watercyclecreatesaself
reinforcingchallenge.Energyuse
releasedgreenhousegases
contributetoclimatechange,which
intensifiesthehydrologicalcycle,
whichleadstogreaterenergyuse
forwater,whichleadstoadditional
greenhousegasemissions.

W
a
t
e
r
E
n
e
r
g
y
C
l
i
m
a
t
e
39
andintegratedgasificationcombinedcycle(IGCC)plantsallofwhichrequirelesswaterthanatypical
pulverizedcoalpowerplant.ForIGCCplantsbasedonGERadiantConvective(452gallonsperMWh),
GEQuench(510gallonsperMWh),ConocoPhillips(433gallons perMWh)orShell(443gallonsper
MWh)gasifiers,thewateruseissubstantiallylessperunitofproducedelectricitythanthatofatypical
pulverizedcoalpowerplant.[65]
Anadditional10to20%morewaterisrequiredforaddingcarboncapturetotheseIGCCreference
plants,whichissmallrelativetothatforpulverizedcoal
plants.[66]AsaresultanIGCCplantwith
carboncapturehasawaterusageonethirdlessthanatraditionalpulverizedcoalplantwithoutcapture .
[27]
Ifclimatechangedrivenpublicpolicyresultsinnewbuildpowerplantsbeingamixofnewpowerplant
designssuchasIGCCthathavebothhigherwaterandenergyefficiencies,evenwithcarboncapture
thenclearlytheeffectonwaterresourceswillbepositive.
40
Conclusions
Aslongasthermoelectricpowerplantsusewatercooling technologiesandwaterandwastewater
treatmentplantsuseelectricityforprocesses,itwillbeimportanttoconsidertheenergywaternexusin
planningandresourcemanagement.Withpopulati ongrowth,theeffectsofclimatechangealready
impactingthehydrologicalcycle,andnewcarbon
pricingpolici esunderconsideration,understanding
thetradeoffsbetweenenergyandwaterbecomesevenmorevitalthaneverforresourceplanningand
management.
Inpreparingthereport,however,itbecameclearthatsubstantiallymoresitespecificdataare
necessaryforafullunderstandingofthenatureoftheenergywaternexus
inTexas.Thus,we
recommendthatthestateincreaseeffortstocollectaccuratedataonthewithdrawalandconsumption
ofcoolingandprocesswateratpowerplants,aswellasdataonelectricityconsumptionforpublicwater
supplyandwastewatertreatmentplantsanddistributionsystems.Thesedatawillalsobeuseful
in
planningforthefuture.
Inthefuture,wateruseforelectricitygenerationwilldependonseveralfactors,includingthefuelmix
fornewgeneratingcapacity,thetypeofpowerplantandthetypeofpowerplantcoolingsystemsthat
aredeployed.Likewise,theamountofelectricityusedtopump,
treatanddeliverpublicwatersupply
andtotreatwastewaterwilldependonchoicesaboutwatersourceandtreatmenttechnology.These
trends,andtradeoffs,stillneedtobebetterunderstood, butitisundeniablethattherewillbe
importantimplicationsforwaterandenergypolicyatthestate andlocal
level.
Thefollowingpolicyrecommendationsarestepsthatcanbetakennowtobuildthebasicsofa
frameworkformoreintegratedenergyandwaterplanning:
Requirethatapplicationsfornewpowerplantsincludeananalysisofthewaterandefficiency
implicationsofvarioustypesofcoolingoptionsapplicable
totheproposedplant.Theanalysis
shouldincludefactorsrelatingtolocalclimateandairquality,regionalairquality,water
availability,includinginstreamflowrequirements,fueltypeandplantefficiency.
Requireacleardemonstra tionofwateravailabilityinthesitingofnewfossilfueledpower
plantsorconcentratedsolar(this
analysisshouldconsideraveragerainfallyearsaswellas
availabilityduringextremedroughtevents).
Providestatestatutoryandregulatoryincentivesforimplementationofpowerplantcooling
technologiesthatarelesswaterintensivethantraditionalsystems,suchasaircoolingorhybrid
wetdrycooling.
Providestateapprovedg uidance
(fromtheTexasWaterDevelopmentBoardand/ortheState
EnergyConservationOffice)towatersuppliersandwastewatertreatmentproviderstohelp
quantifyenergyuseandcostsavingsassociatedwithwaterconservation.
41
Theoverarchingmessageisthatimplementingadvancedefficiencyisthekeytothesustainableuseof
bothenergyandwater.Improvingwaterefficiencywillreducepowerdemandandimprovingenergy
efficiencywillreducewaterdemand.Greaterefficiencyinusageofeitherenergyorwaterwillhelpto
stretch
ourfinitesuppliesofboth,aswellasreducecoststowaterandpowerconsumers.Thestateand
localgovernmentsshouldcontinue,andwhereverpossible,increasefundingandtechnicalsupportfor
waterandenergyconservationandefficiencyprograms.
FutureWork
Futureinstallmentsinthisreportserieswillincludecasestudiesofenergyimplicationsoffuturewater
supplystrategiesforTexasandmoreplacespecificwatersupplyimplicationsofthefuturefuelmixfor
electricityproduction.Thereareseveralotheraspectsoftheenergywaternexusthatarenot
contemplatedinthis
series,butbeinginvestigatedbyseveralotherentities,includingproductionof
hydropowerforelectricitygeneration,wateruseinproducing variousfossilfuelsandalternative
transportationfuels,suchasethanolorotherbiofuels.
42
References
1. "EnergyVisionUpdate2009ThirstyEnergy:WaterandEnergyinthe21stCentury."(2009),
Online.Available:http://www2.cera.com/docs/WEF Fall2008 CERA.pdf
Accessed:March16,2009.
2. "Uruguay,DamsandPeopleareRunningOutofWater."FundacionProteger,(2008),Online.
Available:http://internationalrivers.org/en/latinamerica/paraguayparan%C3%A1basin/uruguayriver
itsdamsanditspeoplearerunningoutwater.Accessed:February1,2008.
3. "Droughtcou ldshutdownnuclearpowerplants."MSNBCNews,(January23,2008),Online.
Available:http://www.msnbc.msn.com/id/22804065/
.Accessed:December19,2008.
4. Barta,Patrick."AmidWaterShortage,AustraliaLookstotheSea."WallStreetJournal(March11,
2008).
5. Emery,Theo."GeorgianswantaccesstoTenn.water."Tennessean(February8,2008).
6. Mungin,Lateef."TwoOffLinePowerPlantsHelpRegionHitWaterGoal."AtlantaJournal
Constitution(December20
,2007).
7. Lippert,JohnandJimJr.Efstathiou."LasVegasRunningOutofWaterMeansDimmingLos
AngelesLights."Bloomberg,(2009),Online.Availabl e:
http://www.bloomberg.com/apps/news?pid=20601109&sid=a b86mnWn9.w&refer=home
.Accessed:
March16,2009.
8. Olinger,David."Water,landoutoffield'sfocus."DenverPost(January29,2008).
9. Poumadere,Marc,etal."The2003HeatWaveinFrance:Dangero usClimateChangeHereand
Now."RiskAnalysis,vol.25,no.6(December2005),pp.14831494.
10. IntergovernmentalPanelonClimateCh
ange.TechnicalPaperonClimateChangeandWater.
IPCCXXVII/Doc13.Geneva,Switzerland,April46,2008.
11. TexasElectricityProfile.EnergyInformationAdministration, 2006.
12. U.S.DataProjections,ElectricitySupplyandDemand,AnnualEnergyOutlook.Energy
InformationAdministration,2008.
13. EnergyInformationAdministration.FormEIA906,EIA920,andEIA923Da
tabases.Online.
Available:http://www.eia.doe.gov/cneaf/electricity/page/eia906 920.html
.Accessed:March17,2009.
14. U.S.DepartmentofEnergy.EnergyDemandsonWaterResources:ReporttoCongressonthe
InterdependencyofEnergyandWater.December2006.
15. Tchobanoglous,GeorgeandEdwardD.Schroeder.WaterQuality:Characteristics,Modeling,
Modification.Readi ng,MA:AddisonWesleyLongman,1987.
43
16. Harbeck,G.E.Jr."EstimatingForcedEvaporationfromCoolingPonds."JournalofthePower
Division,ProceedingsoftheAmericanSocietyofCivilEngineers,vol.90,no.PO3(October1964),
17. Goldstein,R.andW.Smith.ElectricPowerResearchInstitute.Water&Sustainability(Volume
3):U.S.WaterConsumptionforPowerProductio
n‐TheNextHalfCentury.1006786.PaloAlto,CA,
March2002.
18. Micheletti,WayneC.andJohnM.Burns.WayneC.Micheletti,Inc.andBurnsEngineering
Services,Inc.EmergingIssuesandNeedsinPowerPlantCoolingSystems.
19. SPXCoolingTechnologies.AWorldLeaderinAirCooledCondensers.2007.
20. Kutscher,Chuck,etal.Na
tionalRenewableEnergyLaboratory.HybridWet/DryCoolingfor
PowerPlants,PresentationatParabolicTroughTechnologyWorkshop.InclineVillage,NV,February14
16,2006.
21. Wynne,Hugh,etal.BernsteinResearch.U.S.Utilities:WhatWouldanEPARequirementto
InstallCoolingTowersCostthePowerI
ndustry?NewYork,NY,July2,2008.
22. SPXCoolingTechnologies.HybridCoolingTowers:CoolingTowerswithoutvisibleplume.
Ratingen,Germany,20052006.
23. U.S.DepartmentofEnergy.ConcentratingSolarPowerCommercialApplicationStudy: Reducing
WaterConsumptionofConcentratingSolarPowerElectricityGeneration.ReporttoCongress.
Washington,DC,2008.
24. Midwes
tResearchInstitute/NationalRenewableEnergyLaboratory.Task2‐Comparisonof
WetandDryRankineCycleHeatRejection.LDC55501401,TechnicalSupportforParabolicTrough
SolarTechnology,Nexant,Inc.SanFrancisco,CA,July2006.
25. NationalRenewableEnergyLaboratory.ParabolicTroughPowerPlantSystemTechnology.
Online
.Available:http://www.nrel.gov/csp/troughnet/power plant systems.html
.Accessed:October
13,2008.
26. Gleick,PeterH."WaterandEnergy."AnnualReviewofEnergyandtheEnvironment,vol.19,
(1994),pp.267299.
27. Woods,MarkC.,etal.NationalEnergyTechnologyLaboratory.CostandPerformanceBaseline
forFossilEnergyPlants,Volume1:BituminousCoalandNaturalGastoEl
ectricity.Pittsburgh,PA,
August2007.
28. King,Carey,etal."WaterDemandProjectionsforPowerGenerationinTexas. "(2008),Online.
Available:http://www.twdb.state.tx.us/wrpi/data/socio/est/Final pwr.pdf
.Accessed:August31,2008.
29. WorldCoalInstitute.CoalMeetingtheClimateChallenge.Richmond,UK,September2007.
30. Masters,GilbertM.RenewableandEfficientElectricPowerSystems.Hoboken,NJ:JohnWiley&
Sons,Inc.,2004.
44
31. BrooklynCollege.NuclearReactors.Online.Available:
http://academic.brooklyn.cuny.edu/physics/sobel/Nucphys/pile.html
.Accessed:January24,2009.
32. ArizonaStateUniversity.FossilFuels.Online.Available:
http://www.eas.asu.edu/~holbert/eee463/FOSSIL.HTML
.Accessed:January24,2009.
33. U.S.DepartmentofEnergy.HowGasTurbinePowerPlantsWork.Online.Available:
http://www.fe.doe.gov/programs/powersystems/turbines/turbines howitworks.html
.Accessed:
December18,2008.
34. U.S.DepartmentofEnergy.TheTurbinesofTomorrow.Online. Available:
http://www.fe.doe.gov/programs/powersystems/turbines/index.html
.Accessed:December18,2008.
35. Thompson,John."CoalGasification‐AirPollutionandPermittingImplicationsofIGCC."USEPA
AirInnovationsConference, (August10,2004),
36. CityofAustin.WastewaterReports‐DischargeMonitoringReports(DMR).Online.Available:
http://www.ci.austin.tx.us/water/wastewater.htm
.Accessed:November24,2008.
37. Tullo,Alexander."SolarRevolution."Chemical&EngineeringNews,vol.84,no.47(November
20,2006),pp.2528.
38. SolarHome.ThinFilm.Online.Available:http://www.solarhome.org/thinfilm.html
.Accessed:
March27,2008.
39. Malsch,Ineke."ThinFilmsSeekaSolarFuture."TheIndustrialPhysicist,(2003),Online.
Available:http://www.aip.org/tip/INPHFA/vol9/iss2/p16.pdf
.Accessed:March27,2008.
40. Tenaska,Inc.TheTenaskaTrailblazerEnergyCenter:KeyFacts.Online.Available:
http://www.tenaskatrailblazer.com/trailblazer.html
.Accessed:January24,2009.
41. U.S.GeologicalSurvey.SurfacewateruseintheUnitedStates.Online.Available:
http://ga.water.usgs.gov/edu/wusw.html
.Accessed:December18,2008.
42. U.S.GeologicalSurvey.GroundwateruseintheUnitedStates.Online.Available:
http://ga.water.usgs.gov/edu/wugw.html
.Accessed:December18,2008.
43. USGSGroundWaterDatafortheNation.UnitedStatesGeologicalSurvey,2009.
44. Goldstein,R.andW.Smith.ElectricPowerResearchInstitute.Water&Sustainability(Volume
4):U.S.ElectricityConsumptionforWaterSupply&Treatment‐TheNextHalfCentury.1006787.Palo
Alto,CA,March2002.
45. CaliforniaEn
ergyCommission.California'sWaterEnergyRelationship.CEC7002005011SF.
Sacramento,CA,November2005.
46. VanderBruggen,BartandCarloVandecasteele."Distillationvs.membranefiltration:overview
ofprocessevolutionsinseawater."Desalination,vol. 143,no.3(2002),pp.207218.
45
47. Desalination:ANationalPerspective.CommitteeonAdvancingDesalinationTechnology,
NationalResearchCouncil,2008.
48. Lawler,DesmondandMarkBenjamin."PhysicalandChemicalTreatmentProcessesforWater."
2008(Unpublished.)
49. "PrescriptiondrugsfoundindrinkingwateracrossU.S."CNNNews,(March10,2008),Online.
Available:http://www.cnn.com/2008/HEALTH/03/10/pharma.water1/index.html
.Accessed:December
18,2008.
50. U.S.EnvironmentalProtectionAgency.WaterQualityCriteria:DrinkingWaterHealth
Advisories.Online.Available:http://www.epa.gov/waterscience/criteria/drinking/
.Accessed:January
24,2009.
51. Westerhoff,Paul,etal."FateofEndocrineDisruptor,Pharmaceutical,andPersonalCare
ProductChemicalsduringSimulatedDrinkingWaterTreatmentProcesses."EnvironmentalScience&
Technology,vol.39,no.17(2005),pp.66496663.
52. Zwiener,C.andF.H.Frimmel."OxidativeTreatmentofPharmaceuticalsinWater."Water
Res
earch,vol.34,no.6(2000),pp.18811885.
53. AWWARF.ResidentialWaterUseSummary.Online.Available:
http://www.aquacraft.com/Publications/resident.htm
.Accessed:January25,2009.
54. AmericanCouncilforanEnergyEfficientEconomy.ConsumerGuidetoHomeEnergySavings.
Online.Available:http://www.aceee.org/consumerguide/waterheating.htm
.Accessed:February18,
2009.
55. EnergyInformationAdministration.EndUseConsumptionofElectricity2001.Online.Available:
http://www.eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html
.Accessed:March24,
2009.
56. TexasWaterDevelopmentBoard.WaterforTexas2007.GP81.Austin,TX,January2007.
57.TexasCommissiononEnvironmentalQuality.WaterRightsDatabaseandRelatedFiles.Online.
Available:http://www.tceq.state.tx.us/permitting/water supply/water rights/wr databases.html
.
Accessed:October12,2008.
58. TexasCommissiononEnvironmentalQuality.SiteLayers.Online.Available:
http://www.tceq.state.tx.us/gis/sites.html
.Accessed:June13,2008.
59. U.S.EnvironmentalProtectionAgency.EnvirofactsDataWarehouse.Online.Available:
http://www.epa.gov/enviro/
.Accessed:November18,2008.
60. SelectedHistoricalDecennialCensusPopulationandHousingCosts.Online.Available:
http://www.census.gov/population/www/censusdata/hiscendata.html
.Accessed:June12,2008.
46
61. Webber,MichaelE.,etal.TexasCommissiononEnvironmentalQuality.ACleanEnergyPlanfor
Texas.582889236.Austin,TX,August2008.
62. TexasComptrollerofPublicAccounts.LiquidAssets:TheStateofTexas'WaterResources.96
1360.Austin,TX,January2009.
63. Asano,Takashi,et
al.WaterReuse:Issues,Technologies,andApplications.NewYork,NY:
Metcalf&Eddy,Inc.,2007 .
64. Anderson,J."Theenvironmentalbenefitsofwaterrecyclingandreuse."WaterScienceand
Technology:WaterSupply,vol.3,no.4(2003),pp.110.
65. Stiegel,GaryJ.,etal.NationalEnergyTechnology
Laboratory.PowerPlantWaterUsageand
LossStudy.Pittsburgh,PA,May2007.
66. NationalEnergyTechnologyLaboratory.IGCCPlantsWithandWithoutCarbonCaptureand
Sequestration.Pittsburgh,PA,2007.
47
AppendixA:GlossaryofTerms
Energyterms
capacity Theelectricalpowerthatapowerplantiscapableofproducing,generally
measuredinkilowattsormegawatts
CCS Carboncaptureandstorage;systemstocollect,transport,andstoreCO
2
frompowerplants
CO
2
carbondioxide
consumption Evaporatingwatersuchthatitisnotdirectlyreusableinthesamelocation
CSP Concentratingsolarpower;typeofsolarcellsthatconvertthermalenergy
fromthesunintoelectricalenergy
generation Theamountofelectricalenergythatapowerplantproduces,generally
measuredinkilowatthours
ormegawatthours
GHG greenhousegas
GW Gigawatt
HRSG Heatrecoverysteamgenerator;usedwithcombinedcyclepowerplants
IGCC Integratedgasificationcombinedcycle
kW kilowatt,unitsofpower
kWh kilowatthour,unitsofenergy
MW Megawatt,10
3
kW,unitsofpower
MWh Megawatthour,10
3
kWh,unitsofenergy
PV Photovoltaic;typeofsolarcellsthatconvertradiantenergyfromthesun
intoelectricalenergy
TWh Terrawatthour,10
9
kWh,unitsofenergy
withdrawal Removingwaterfromasurfaceorgroundwatersource
Waterterms
acft acrefeet.(325,851gallons)
capacity Theflowratethatawaterorwastewatertreatmentplantiscapableof
treating,generallymeasuredingallonsperday
demand Consumption;termprimarilyusedbyTWDB
gal gallon
48
Mgal milliongallons
mgd milliongallonsperday
permitteddischarge Themaximumflowratethatawaterorwastewatertreatmentplantcan
legallyreturntoareceivingwaterbody
Generalterms
EISA2007 EnergyIndependenceandSecurityActof2007
EPA EnvironmentalProtectionAgency
EPACT2005 EnergyPolicyActof2005
TCEQ TexasCommissiononEnvironmentalQuality
TWDB TexasWaterDevelopmentBoard
49
AppendixB:TypicalWaterBalancesforPowerPlants
AmericanElectricPower
50
51
SouthTexasProject